

[Roy* et al., 5(5): May, 2018]

ISSN: 2349-5197 Impact Factor: 3.765

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT FORMULATION OF SOLUTIONS OF STANDARD QUADRATIC CONGRUENCE OF EVEN COMPOSITE MODULUS

Prof. B. M. Roy

Head, Dept. of Mathematics, Jagat Arts, Commerce & I H P Science college, Goregaon (Gondia). Affiliated to RTM Nagpur University (INDIA)

DOI: 10.5281/zenodo.1254399

Keywords: Chinese Remainder Theorem, even composite modulus, Quadratic Congruence.

Abstract

In this paper, a formula for finding solutions of a solvable standard quadratic congruence of even composite modulus as a product of two different primes is established. It solves the problem directly. It saves time of calculation. Formulation is the merit of the paper

Introduction

A congruence $x^2 \equiv a \pmod{m}$ is a standard quadratic congruence in an unknown x.

If m is a prime positive integer, then the congruence is called a congruence of prime modulus. If m is a composite integer, then the congruence is called a standard quadratic congruence of composite modulus. Here we consider the congruence $x^2 \equiv a \pmod{2pq}$ and has four incongruent solutions [2].

Need of research

The congruence under consideration can be solved by using Chinese Remainder Theorem; it takes a long time to find all the solutions. It is not a fair method for students. No formulation is found in the literature of mathematics. Here lies the need of this research. I tried my best to formulate the congruence and the effort is presented in this paper.

Problem-statement

Formulation of a solvable standard quadratic congruence of even composite modulus: $x^2 \equiv a \pmod{2pq}$ (1) *where p, q* are distinct positive odd primes with q < p.

Discussion of existed method [2]

Consider the congruence (1).

It can be explit into three congruence:	
$x^2 \equiv 1 \pmod{2}$ (i)	
$x^2 \equiv a \pmod{p}$ (ii)	
$x^2 \equiv a \pmod{q}$ (iii)	

These standard quadratic congruence can be solved separately to get solutions:

$x \equiv 1 \pmod{2} \dots \dots$	(iv)
$x \equiv c, d \pmod{p}$	(v)
$x \equiv e, f \pmod{q} \dots$	(vi)

as "every solvable quadratic congruence of positive odd prime modulus has exactly two solutions [2].

Solving these, four solutions can be obtained using Chinese Remainder Theorem.

Demerits of the proposed method:

Definitely, use of "Chinese Remainder Theorem" is a time-consuming calculation. It sometimes becomes a boring task because it is complicated.

[Roy* et al., 5(5): May, 2018]

ISSN: 2349-5197 Impact Factor: 3.765

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

Discussion of Proposed method (Formulation)

Consider the congruence (1). If $a = b^2$, then the congruence becomes $x^2 \equiv b^2 \pmod{2pq}$.

Two obvious solutions of the congruence are: $x \equiv 2pq \pm b \pmod{2pq}$. *i.e.* $x \equiv 2pq + b$, $2pq - b \pmod{2pq}$ *i.e.* $x \equiv b$, $2pq - b \pmod{2pq}$.

Thus, b is a solution of $x^2 \equiv b^2 \pmod{2pq}$.

If $a \neq b^2$, then we add "2kpq" to a to get a + 2kpq with such a k such that $a + 2kpq = b^2$.

Then, the two obvious solutions are as before.

Now, for the other two solutions let
$$x = \pm (2pk \pm b)$$
,
we have
 $x^2 = \{\pm (2pk \pm b)\}^2$
 $= 4p^2k^2 \pm 4pkb + b^2$
 $= b^2 + 4pk(pk \pm b)$
 $= b^2 + 4p(qt)$
 $= b^2 + 2t(2pq)$, if $k(pk \pm b) = qt$, for an integer t.
 $\equiv b^2 \pmod{2pq}$, if $k(pk \pm b) = qt$.

Thus, the other two solutions are given by:

 $x \equiv \pm (2pk \pm b)$, if $k(pk \pm b) = qt$, for some positive integer t.

Therefore, the congruence $x^2 \equiv b^2 \pmod{2pq}$ has two obvious solutions $x \equiv \pm b \pmod{2pq}$; and other solutions are $x \equiv \pm (2pk \pm b) \pmod{2pq}$, when $k(pk \pm b) = qt$, for positive integer t.

Illustration of method by an Example

Consider the congruence: $x^2 \equiv 4 \pmod{42}$. Here, 42 = 2.3.7 with p = 7, q = 3. Thus, the congruence is of the type: $x^2 \equiv a \pmod{2pq}$.

Solution by existed Method:

Consider $x^2 \equiv 4 \pmod{42}$. We see that 42 = 2.3.7

So, the congruence can be explit into the following congruence:

$x^2 \equiv 4 \pmod{2}$	i.e. $x^2 \equiv 0 \pmod{2}$ giving solutions $x \equiv 0 \pmod{2}$
	<i>i.e.</i> $x^2 \equiv 1 \pmod{3}$ giving solutions $x \equiv 1, 2 \pmod{3}$
$x^2 \equiv 4 \pmod{7}$	i.e. $x^2 \equiv 4 \pmod{7}$ giving solutions $x \equiv 2,5 \pmod{7}$

We consider the congruence for Chinese remainder Theorem.

Thus, we have $x \equiv 0 \pmod{2}$; $x \equiv 1, 2 \pmod{3}$; $x \equiv 2, 5 \pmod{7}$. So, $a_1 = 0$; $a_2 = 1 \text{ or } 2$; $a_3 = 2 \text{ or } 5$; $m_1 = 2$; $m_2 = 3$; $m_3 = 7$. We have, M = [2, 3, 7] = 42; $M_1 = 21$; $M_2 = 14$; $M_3 = 6$. Now, $M_1 x \equiv 1 \pmod{m_1}$ i.e. $21x \equiv 1 \pmod{2}$ i.e. $x \equiv 1 \pmod{2}$ giving $x_1 = 1$. $M_2 x \equiv 1 \pmod{m_2}$ i.e. $14x \equiv 1 \pmod{3}$ i.e. $x \equiv 2 \pmod{3}$ giving $x_2 = 2$. $M_3 x \equiv 1 \pmod{m_3}$ i.e. $6x \equiv 1 \pmod{7}$ i.e. $x \equiv -1 \pmod{7}$ giving $x_3 = -1$.

The common solutions are given by $x_0 \equiv a_1M_1x_1 + a_2M_2x_2 + a_3M_3x_3 \pmod{M}$. Putting values one must get $x_0 \equiv 2,40$; 16, 26 (mod 42)[calculations not shown].

[Roy* et al., 5(5): May, 2018]

ISSN: 2349-5197 Impact Factor: 3.765

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

Isn't a time-consuming method??

Solution by Formulation:

Consider $x^2 \equiv 4 \pmod{42}$.

It can be written as: $x^2 \equiv 4 = 2^2 \pmod{42}$ giving solutions $x \equiv \pm 2 \pmod{42}$ *i.e.* $x \equiv 2,40 \pmod{42}$. Therefore, b = 2 is a solution.

Other two solutions are given by $x \equiv \pm (2pk \pm b) \pmod{2pq}$, if $k(pk \pm b) = qt$, for some integer t. So, $x \equiv \pm (2.7.k \pm 2) \pmod{42}$, if $k(7k \pm 2) = 3t$ *i.e.* $x \equiv \pm (14k \pm 2) \pmod{42}$ if $k(7k \pm 2) = 3t$.

But 1. (7.1 + 2) = 9 = 3.3 giving k = 1

Thus, other two solutions are $x \equiv \pm (14.1 + 2) = \pm 16 \pmod{42}$ *i.e.* $x \equiv 16, 26 \pmod{42}$. Therefore, all the solutions are $x \equiv 2, 40; 16, 26 \pmod{42}$.

These are the same solutions obtained as in above by existed method but easily and in comparatively less time.

Conclusion

Thus a simpler, less time-consuming new method of finding solutions (directly) of a solvable quadratic congruence of even composite modulus of the type $x^2 \equiv a^2 \pmod{2pq}$ with p, q are odd primes, is developed. No need to use Chinese Remainder Theorem. This is the merit of this paper.

References

- [1] Niven I., Zuckerman H. S., Montgomery H. L. (1960, Reprint 2008), "An Introduction to The Theory of Numbers", 5/e, Wiley India (Pvt) Ltd.
- [2] Koshy Thomas, Elementary Number Theory with Applications, 2/e, Academic press.
- [3] Burton David, Elementary number theory, 7/e, Mac Graw Hill.
- [4] Roy B. M., Discrete Mathematics & Number Theory, 1/e, Das Ganu Prakashan, Nagpur, INDIA.