

[Bhat* et al., 4(5): May, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[123]

DESIGN OF FLOATING POINT MULTIPLIER BASED ON BOOTH ALGORITHM

USING VHDL
Ms. Anuja A. Bhat* & Prof. Rutuja Warbhe
*Department of EXTC, B. D. College of Engineering,SewagramWardha,RTMNU, INDIA

Department of Electrical Engineering , D.Y.P.I.T, Pimpri, Pune,SPPU,INDIA

DOI: 10.5281/zenodo.580860

Keywords: Booth Algorithm, Floating Point Multiplier,Xilinx.Floating Point Subtractor, VHDL.

Abstract
In this paper, high Speed, low power and less delay 32-bit IEEE 754 Floating PointSubtractor

andMultiplierispresented using Booth Multiplier. Multiplication is an important fundamental function in many

Digital Signal Processing (DSP) applications such as Fast Fourier Transform (FFT). Since multiplication

dominates the execution time of most DSP algorithms, so there is a need of high speed multiplier. The main

objective of this researchis to reduce delay, power and to increase the speed.The coding is done in VHDL,

synthesis and simulationhas been done using Xilinx ISE simulator. The modules designed are 24-bit Booth

Multiplier for mantissa multiplication in Floating Point Multiplier, 32-bit Floating Point Subtractor and 32-bit

Floating Point Multiplier. The Computational delay obtained by Floating Point Subtractor, booth multiplier and

floating point multiplier is 16.180nsec, 33.159nsec and 18.623nsec respectively.

Introduction
The fundamental and the core of all the digital signal processors (DSPs) are its multipliers, and the speed of the

DSPs is mainly determined by the speed of its multiplier.Multipliers are key components of many high

performance systems such as microprocessors, FIR filters, digital signal processors, etc. Performance of a

system is generally determined by the performance of the multiplier because the multiplier is generally the

slowest element in the system. Since multiplication dominates the execution time of most DSP application so

there is need of high speed multiplier. Complex number operations are the backbone of many digital signal

processingalgorithms, which mostly depend on extensive number of multiplication. Complex multiplication is

of immense importance in Digital Signal Processing (DSP) and Image Processing (IP).To implement the

hardware module of Discrete Fourier Transformation (DFT), Discrete Cosine Transformation (DCT), Discrete

Sine Transformation (DST) and modern broadband communications; large numbers of complex multipliers are

required.

Booth Algorithm

Multiplication is an important fundamental function in arithmetic operation.Signed multiplication is a careful

process. With unsigned multiplication there is no need to take the sign of the number into consideration.

However in signed multiplication the same process cannot be applied because the signed number is in a 2’s

compliment form which would yield an incorrect result if multiplied in a similar fashion to

unsignedmultiplication.That’s where Booth’s algorithm comes in.Booth’s algorithm preservesthe sign of the

result.

Booth’s algorithm is a well known method for 2’s complement multiplication. It speeds up the process by

analyzing multiple bits of multiplier at a time. This widely used scheme for two’s complement multiplication

was designed by Andrew D. Booth in 1951. Booth algorithm is an elegant way for this type of multiplication

which treats both positive and negative operands uniformly. It allows nbit multiplication to be done using fewer

than n additions or subtractions, thereby making possible faster multiplication. Booth’s multiplication algorithm

is a multiplication algorithm that multiplies two signed binary numbers in two’s complement notation.

[Bhat* et al., 4(5): May, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[124]

There are 2 methods that you should know before attempting Booth’s algorithm. Rightshiftcirculant and right-

shift arithmetic.

Right-shift circulant (RSC), is simply shifting the bit, in a binary string, tothe right 1 bit position and take the

last bit in the string and append it to the beginning ofthe string.

Example:

10110

after right-shift circulant now equals – 01011

Right-shift arithmetic (RSA), is where you add 2 binary number togetherand shift the result to the right 1 bit

position.

Example:

0100

+0110

result = 1010

Now shift all bits right and put the first bit of the result at the beginning of the new

string:

result 1010

shift 11010

According to Booth’s multiplication algorithm among the two input binary numbers the one with minimum

number of bit changes is considered as multiplier and the other as a multiplicand in order to reduce the time

taken for calculating the multiplication product.

The steps for performing booth multiplication are as follows:

Let the multiplicand be ‘B’ and multiplier be ‘Q’.

Assume initially value of ‘A’ and ‘Q-1’ is zero.

The main step is to check last two bits.

There will be iterations according to the number of multiplier.

For example, if the multiplier is of 2-bit then 2 Iterations will be done, for 4-bit multiplier 4 iterations are

done, and so on.

Now, the algorithm starts, first the last two digits are checked and if the two bits are “00” or “11” the only

Arithmetic Right Shift is done.

And if the last two bits are “01”, then A is added with B, and result is stored into A.

If the last two bits are “10”, then A is subtracted from B, and result is stored into A.

Finally, the result obtained is coded in binary form which gives the desired output.

In this way multiplication of any two numbers is performed using booth algorithm.

Example :-

 Multiply 14 * -5 using 5-bit numbers.

 14 in binary: 01110

-14 in binary : 10010

 5 in binary : 00101

 -5 in binary : 11011

Result : -70 in binary : 11101 11010 (10-bit result).

Module Designed

Floating Point Subtractor (Fps)

The following flowchart shows the operation of FPS

[Bhat* et al., 4(5): May, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[125]

Fig 1: Flowchart of floating point subtractor

Performing Floating Point Addition Result = X - Y = (Xm * 2^Xe) - (Ym * 2^Ye)involves the following steps :

1. Align binary point

 Initial result exponent : the larger of Xe, Ye

 Compute exponent difference : Ye – Xe

 If Ye >Xe Right shift Xm that many positions to form Xm 2 ^Xe-Ye

 If Xe> Ye Right shift Ym that many positions to form Ym 2^Ye – Xe

2. Compute sum of aligned mantissas

i.eXm*2^Xe-Ye - Ym or Xm-Xm*2^Ye-Xe

3. If normalization of result is needed, then a normalization steps follows

 Left shift result, decrement result exponent (eg. if result is 0.001xx..) or

 Right shift result, increment result exponent (eg. if result is 10.1xx..)

Continue until MSB of data is 1

4. Check result exponent

 If larger than maximum exponent allowed return exponent overflow

 If smaller than minimum exponent allowed return exponent underflow

 If result mantissa is 0, may need to set the exponent to zero by a special step to return a proper zero.

Example :

X=2345.125 =100100101001.001represented as:

Y=0.75 =0.11represented as:

0 10001010 00100101001001000000000

[Bhat* et al., 4(5): May, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[126]

Xe>Ye initial result exponent = Ye= 10001010 =

138base10

Xe - Ye = 10001010 - 01111110 = 00000110 = 12base 10

Shift Ym 12base10postions to the right to formYm= 0.00000000000110000000000

Xm -Ym=1.00100101001001000000000-0.00000000000110000000000

=1. 00100101001111000000000

Result is

 If the exponents differ by more than 24,the smaller number will be shifted right entirely out of the

mantissa field,producing a zero mantissa.

-The sum will then equal the larger number.

-Such truncation errors occur when the numbers differ by a factor of more than 2^24,which is

approximately 1.6*10^7.

-Thus,the precision of IEEE single precision floating point arithmetic is approximately 7 decimal

digits.

 Negative mantissa are handled by first converting to 2`s complement and then performing the addition.

-After the addition is performed,the result is converted back to sign-magnitude form.

 When adding numbers of opposite sign,cancelltion may occur,resulting in a sum which is arbitrarily

small,or even zero if the numbers are equal in magnitude.

-Normalization in this case may require shifting bye the total number of bits in the mantissa,resulting in

alarge loss of accuracy.

Fig 2 : Simulation results of floating point subtractor

Booth multiplier_24bit
If 00 then P= Arithmetic Right Shift

If 11 then P= Arithmetic Right Shift

If 01 then P=P+S

If 10 then P=P+S

0 01111110 10000000000000000000000

0 10001010 00100101000011000000000

[Bhat* et al., 4(5): May, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[127]

Example :4*4

 m=4=0100 m=- 4 =1100

 r=4=0100 r=-4=1100

A= 0100 0000 0

S= 1100 0000 1

P= 0000 0100 0

 perform the loop 4 times :

 P= 0000 0100 0

Right shift P= 0000 0100 0

 P= 0000 0010 0

Right shift P= 0000 0010 0

 P=0000 0001 0

P=P+S= 1100 0001 0

Right shift P= 1100 0001 0

P=0110 0000 1

P=P+S= 0010 0000 0

Right shift P=0001 0000 0

The product is 0001 0000 which is 16

Fig : Simulation results of BOOTH multiplier

Floating Point Multiplier (Fpm)

The following flowchart shows the operation of FPM

[Bhat* et al., 4(5): May, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[128]

Fig 1.3 : Flowchart of floating point multiplier

Performing Floating Point Multiplication Result = X * Y = (-1)^Xs (Xm * 2^Xe) * (-1)^Ys(Ym * 2^Ye)

involves the following steps :

1. If one or both operands is equal to zero,return the result as zero,otherwise:

2. Compute the sign of the result Xs XOR Ys

3. Compute the mantissa of the result :

• Multiply the mantissas : Xm * Ym

• Round the result to the allowed number of mantissa bits`

4. Compute the exponent of the result:

 Result Exponent =biased exponent (X) + biased exponent (Y) –bias

5. Normalize if needed, by shifting mantissa right,incrementing result exponent.

6. Check result exponent for overflow/underflow:

• If larger than maxmimum exponent allowed return exponent overflow

• If smaller than minimum exponent allowed return exponent underflow

•

Example :

X=2345.125 =100100101001.001represented as:

Y=0.75 =0.11represented as:

S= 0 XOR 0 = 0

Xe + Ye = 10001010 + 01111110 = 00001010

E = Xe+Ye – 127 = 00001010 – 01111111= 10001001

M = Xm * Ym = 00100101001001000000000 * 10000000000000000000000

0 10001010 00100101001001000000000

0 01111110 10000000000000000000000

[Bhat* et al., 4(5): May, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[129]

 = 01010110000000000000000

Result is

 Rounding occurs in floating point multiplictation when the mantissa of the product is reduced from 48

bits to 24 bits.

-The least significant 24 bits are discarded.

 Overflow occurs when the sum of the exponents exceeds 127, the largest value which is defined in bias

-127 exponent representation.

-When this occurs,the exponent is set to 128(E=255) and the mantissa is set to zero indicating + or –

infinity.

 Underflow occurs when the sum of the exponents is more negative than -126,theost negative value

which is defined in bias -127 exponent representation.

 -when this occurs,the exponent is set to -127(E=0).

 -If M=0,the number is exactly zero.

 -If M is not zero,then a denormalized number is indicated which has an exponent of -127 and a hidden bit of 0.

 -The smallest such number which is not zero is 2^-149.This number retains only a single bit of precision in the

rightmost bit of the mantissa.

Fig : Simulation results of floating point multiplier

Conclusion
The modules designed are 24-bit Booth Multiplier for mantissa multiplication in Floating Point Multiplier, 32-

bit Floating Point Subtractor and 32-bit Floating Point Multiplier. The Computational delay obtained by

Floating Point Subtractor, booth multiplier and floating point multiplier is 16.180nsec, 33.159nsec and

18.623nsec respectively.

References
[1] RizalafandeCheIsmail ,RazaidiHussin , “High Performance Complex Number Multiplier Using Booth-

Wallace Algorithm ”, ICSE2006 Proc. 2006, Kuala Lumpur, Malaysia.

[2] PrabirSaha , Arindam Banerjee , Partha Bhattacharyya , AnupDandapat , “ High Speed ASIC Design of

Complex Multiplier Using Vedic Mathematics ” , Proceeding of the 2011 IEEE Students' Technology

Symposium 14-16 January, 2011, lITKharagpur .

[3] Rajashri K. Bhongade, SharadaG.Mungale, KarunaBogawar , “ Vhdl Implementation and Comparison

of Complex Mul-tiplier Using Booth’s and Vedic Algorithm ” , COMPUSOFT, An international

journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III) .

[4] L P. Thakare , Dr. A Y. Deshmukh , “Area Efficient Complex Floating Point Multiplier For

Reconfigurable FFT/IFFT Processor Based On Vedic Algorithm ”, Science Direct / 7th International

0 10001001 01010110000000000000000

[Bhat* et al., 4(5): May, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[130]

Conference on Communication, Computing and Virtualization 2016

[5] RajashriBhongade ,S.G.Mungale , KarunaBogavar , “Performance Evaluation of High Speed Complex

Multiplier Using Vedic Mathematics ”,International Journal of Innovative Research in Advanced

Engineering (IJIRAE)Volume 1 Issue 1 (April 2014).

[6] Laxman P. Thakare , A. Y. Deshmukh , Gopichand D. Khandale , “VHDL Implementation of

ComplexNumber Multiplier Using Vedic Mathematics ”, Springer 2014.

[7] Gopichand D. Khandale , Laxman P. Thakare , Dr. A. Y. Deshmukh , “Performance Evaluation of

Complex Multiplier Using Advance Algorithm ”, International Journal of Electronics and Computer

Science Engineering 1018 Available Online at www.ijecse.org ISSN- 2277-1956.

[8] AnkushNikam, Swati Salunke, SwetaBhurse , “Design and Implementation of 32bit Complex

Multiplier using Vedic Algorithm”, International Journal of Engineering Research & Technology

(IJERT) ISSN: 2278-0181 Vol. 4 Issue 03, March-2015 644.

