

[Sangeetha* et al., 4(6): June, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[43]

SOFTWARE REFACTORING COST ESTIMATION USING PARTICLE SWARM

OPTIMIZATION
M. Sangeetha*, Dr. P. Sengottuvelan

*Ph.D Research scholar, Department of computer science, Periyar University PG Extension Centre,

Dharmapuri - 636705, INDIA

Associate Professor, Department of computer science, Periyar University PG Extension Centre,

Dharmapuri - 636705, INDIA

DOI: 10.5281/zenodo.583651

Keywords: cost estimation, PSO, COCOMO, estimate PSO.

Abstract
 “Now a day’s software industry major development cost devoted software maintenance. The major challenge

for this industry is to produce quality software which is timely designed and build with proper cost estimates.

Refactoring is used increasing the ability of software to adopt the new requirements and maintenance In this

paper, we have proposed a cost estimation model based on Multi-objective Particle Swarm Optimization

(MPSO) to tune the parameters of the famous Constructive Cost Model (COCOMO). This cost estimation

model is integrated with Quality Function Deployment (QFD) methodology to support decision making

in software designing and development processes for improving the quality. This approach helps to the

developers to efficiently plan the overall software development life cycle.

Introduction
In software industrial field, the software cost estimation has also emerged as a major issue. The cost

predict for any software product is the most hard task which is penetrating for its customers,

developers and users. It affects the total software project development process including contract negotiations,

scheduling, resource allocation and project planning [1, 2]. Specious cost estimation and poor code design may

result in complete software failure. Over estimation and code drift may result in low quality software and late

delivery. Thus a accurate cost estimation is always needed to correctly set up the software development [2]

and to avoid the harmful market consequences arising because of missing the deadlines and producing

low quality products [3, 4].

Many of the proposed cost estimation models such as Putnam’s SLIM [5], RCA’s PRICE-S [6] and Boehm’s

COCOMO II [4] depends on the size of the software. Some other non-parametric models include expert

judgments; break down structures, regression based and ynamics based models [7]. Recently, many researchers

have explore the domain of evolutionary working out techniques [8,9, 10] to form better opinion models [3, 13,

14,15, 16] because of the remarkable exploration and optimization capabilities of these algorithms [9,10]

and their power to tackle ambiguity and suspicions [15, 16]. In this paper also we have proposed one of these

techniques. We have tried to scrutinize Particle Swarm Optimization (PSO)[11, 12], which is a pretending

optimization technique based on the movement and intelligence of swarms. Here PSO is used to build a more

perfect cost estimation model, by alteration the COCOMO model parameters.. It is an efficient study to establish

a relation between. The aim of QFD is to transform subjective quality criteria into quantifiable and

measurable objective ones which can then be used in the designing and developing the project resulting in

increased product acceptance. In the rest of the paper is organized as follows: First we have described the

QFD technique then the application of QFD in guiding the software process is detailed. Secondly

software cost estimation problem is described with a COCOMO based mathematical model and

finally a solution is proposed through PSO.

Software Cost Estimation Procedure
Refactoring is reengineering within the object oriented context. Software refactoring can be defined as “the

process of changing a software system in such a way that it does not alter the external behavior of the code yet

[Sangeetha* et al., 4(6): June, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[44]

improves its internal structure”. Refactoring if applied on the working software than it ameliorates the

performance of the support contrasting with the principal of “If Its Working Don’t Change”. Refactoring can be

applied on the poorly working program which contains some bugs that are to be fixed. If you have a poorly

factored program that does what the customer needs and has no serious bugs, then you may feel not to apply

refactoring on it. When you need to fix a bug or add a feature, you refactor such as Extreme Programming has

generated a great amount of interest in refactoring, and refactoring support has become a required feature

in modern-day IDEs. The key insight is that it's easier to rearrange the code correctly if you don't simultaneously

try to change its functionality. The existing tools provide only the feature of transformation from existing to

the new design where as the proposed model in this paper can be used for the calculation of the cost required to

perform refactoring that we have proposed five opportunities to be refactored.

Figure 1: Software project estimation procedure

Particle Swarm Optimization (PSO)
PSO is a population based computational technique that optimizes a given problem with the help of particles that

moves in the search space [11].Every particle retains a track of its locations in the problem space. These

locations/coordinates are associated with the best solution it has reached so far. This best solution is known as pbest.

Another best value that is recorded by the particle swarm optimizer is the best value, obtained so far by any particle

in the population is called gbest. The movement/direction of movement of any particle is controlled by these two

values: pbest and gbest [12]. The PSO technique is described in algorithm

[Sangeetha* et al., 4(6): June, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[45]

Why PSO?
It is highly desirable to get the accurate estimates of cost and effort, but no prototype has proved to be effective at

efficiently and reliably predicting software development cost because of the uncertainties, contingencies and

imprecisions associated with the software development process [35]. Due to these characteristics the focus of

researchers has been shifted to use the natural computing paradigm models that simulate procedures to learn and react

in an uncertain environment. PSO is one of these optimization techniques, which is both robust and stochastic. It is

based on the methodology to solve a new problem by adapting the solutions of previous similar problems. Also PSO

is fast and cheap and since its evolution PSO has been successfully deployed in various research and application areas

ranging from engineering utilities to business critical software to real time optimization procedures [36]. Thus PSO is

chosen as an ideal algorithm to solve the software effort estimation problem.

Algorithm 2: Particle Swarm Optimization (PSO)

Given:

Vki= Velocity of ith particle at kth iteration.

Sik= Position of ith particle at kth iteration.

pbest = pbest of ith particle.

Gbest = gbest of the whole population.

w, c1 and c2 are weighting variables and rand is

uniformly distributed random number generator

between 0 and 1.

𝑉𝑖
𝑘+1= + G.rand()(𝑝𝑏𝑎𝑠𝑒𝑖 − 𝑆𝑖

𝑘) + 𝐶2 𝑟𝑎𝑛𝑑3()𝑔𝑏𝑎𝑠𝑒1
𝑘−𝑆𝑖

𝑘

𝑆𝑖
𝑘+1 = 𝑆1

𝑘 + 𝑉𝑖
𝑘+1

Step1. Initialize all t h e p a r t i c l e s with random positions and velocities.

Step2. For all particles

 a) Evaluate their fitness f on the basis of their location l.

 b) If f is better then pbest then pbest= l.

Step3. Set best of pbest as gbest.

Step4. Update each particle’s velocity and position according to equation (4) and (5).

Step 5. GOTO 2 until maximum iterations.

Step 6. Return gbest as optimal solution

Estimation using PSO
In our model, we have used PSO to calibrate the COCOMO model parameters. This model would be responsible for

optimizing the estimated effort. students and the work groups The students are divided groups of 5 to 6. The groups

were formed based upon the academic performance of the previous terms as well as the previous software

development experience. Each group contains 2-3 people and they all had two years of experience in the field of

software development. Table1 contains the previous knowledge and experiences that the students had prior to the

beginning of the software project.

[Sangeetha* et al., 4(6): June, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[46]

Table 1. Previous knowledge and experiences

Characteristics Experience and knowledge

Project Management Short and medium software

programming Projects

Programming Platform C, C++, Java, C#, Python

Databases SQL server, MS SQL server

Analysis and Design Object oriented design

Software Estimation No previous experience

The PSO is followed by each group the implementation each group. Every group had to develop two iterations in

the implementation phase. Each iteration had taken two weeks of work. The number of use cases implemented in

the second and third iteration was based on the previous iterations. There were four use cases that were

implemented for each iteration.

Table 2. Software Used for the Projects

Experimental Results
The actual efforts are measured in men-hours. The actual effort is determine by the effective work done by

each group for software design, testing and implementation

. Table 3: Actual Effort for Group A Project

Iteration

Group A

Actual

Effort

UFP

1 292 187.23

2 189 195.61

Item Software

Documenting Software MS office suite 2007/2010

Modeling Software Rational Rose

Programming Language C++, Java

Data base Microsoft SQL server 2008

Operating System Linux, Unix

[Sangeetha* et al., 4(6): June, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[47]

Table 4.: Actual Effort for Group A Project

Iteration

Group B

Actual

Effort

UFP

1 322 155.13

2 277 178.30

Magnitude of Relative Error
A Magnitude of relative error is showing the deviation between the prediction of the formula and the

observed data.

Magnitude of Relative Error =
 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑜𝑟𝑡

 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡⁄

Table 4 Magnitude of relative error: Group A

Table 5 Magnitude of relative error: Group B

Iteration EAF

Factor

Actual

Effort

Estimated

Effort

MRE

1 1.46 1.932 1.687 12.6%

2 0.8 1.143 1.278 11.8%

Table 6 Magnitude of relative error: Group C

teration EAF Factor Actual

Effort

Estimated

Effort

MRE

1 1.46 1.738 1.952 12.31%

2 0.8 0.893 0.972 8.8%

Estimated

Effort

Iteration EAF

Factor

Actual

Effort

MRE

1.845 1 1.46 1.753 9.2%

1.585 2 0.8 1.544 2.65%

[Sangeetha* et al., 4(6): June, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[48]

Table 7 Magnitude of relative error: Group

Fig 2 Magnitude of relative error in consecutive iteration

Conclusion
 Software cost estimation is based on a probabilistic model and hence it does not generate exact values.

However availability of good historical data coupled with a systematic technique can generate better results. In

this paper we proposed new model structure to estimate the We have used PSO to build a suitable model for

software cost estimation by tuning the COCOMO parameters. We have also used QFD technique to

establish a high correlation between customer requirements and design specification. This not only

guides the software development process but helps to find the cost driver’s values also. Thus gives a

better cost estimate. So, this paper is an integration of QFD technique and PSO method to develop a more

precise software cost estimation model

References
[1] T. Benala, S. Dehuri, S. Satapathy and S. Raghavi, “Genetic Algorithm for Optimizing Neural Network

Based Software Cost Estimation”, Lecture Notes in Computer Science, Springer Berlin, vol. 7076,

pp. 233- 239, 2011.

[2] H. Leung, Z. Fan, “Software Cost Estimation”, Handbook of Software Engineering, Hong Kong

Polytechnic University, 2002.

[3] A. Sheta, D. Rine and A. Ayesh, “Development of Software Effort and Schedule Estimation

Models Using Soft Computing Techniques”, IEEE Congress on Evolutionary Computation, 2008.

[4] B. W. Boehm, C. Abts, et al. “Software Cost Estimation with COCOMO II”, Upper Saddle

River, NJ, Prentice Hall PTR, 2000.

[5] L. H. Putnam, “A General Empirical Solution to the Macro Software Sizing and Estimating Problem”,

IEEE Transactions on Software Engineering 4, pp. 345-361, 1978.

[Sangeetha* et al., 4(6): June, 2017] ISSN: 234-5197
 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com © International Journal of Research Science & Management

[49]

[6] F. R. Freiman, R.E. Park, “PRICE Software Model – Version 3: An Overview”, IEEE-PINY Workshop

on Quantitative Software Models, pp. 32–41, 1979.

[7] Y. F. Li, M. Xie and T. N. Goh, “A Study Of Project Selection Feature Weighting For Analogy Based

Software Cost Estimation”, The Journal Of Systems and Software 82, pp. 241–252, 2009.

[8] C. A. CoelloCoello, “Evolutionary Multiobjective Optimization: A Historical View of the

Field”, IEEE computational Intelligence Magazine, 1, pages 28-36, 2006.

[9] K. Deb, “Multi-Objective Optimization Using Evolutionay Algorithms”, John Wiley,

Chichester, UK (2001).

[10] EckartZitzler, Marco Laumanns and Stefan Bleuler, “A Tutorial on Evolutionary Multiobjective

Optimization, Metaheuristics for Multiobjectiv eOptimisation”, Springer. Lecture Notes in

Economics and Mathematical Systems Vol. 535, Berlin, pp. 3-37, 2004.

[11] J. Kennedy and R. Eberhart, “Particle swarm optimization”, in Proc. IEEE Int. Conf. Neural Networks,

pp. 1942–1948, 1995.

[12] R. C. Eberhart and Y. Shi, “Particle swarm optimization: Developments, applications and

resources,” in Proc. IEEE Int. Conf. Evolutionary Computation, vol. 1, pp. 81–86, 2001.

[13] Tad Gonsalves, Atsushi Ito, Ryo Kawabata and Kiyoshi Itoh, “Swarm Intelligence in the

Optimization of Software Development Project Schedule”, in Proc. IEEE, 0730-3157/08 , 2008.

[14] J .S. Pahariya, V. Ravi and M. Carr, “Software Cost Estimation using Computational

Intelligence Techniques”, World Congress on Nature and Biologically Inspired Computing, 2009.

[15] M.W. Nisar, J. W. Yong and M. Elahi, “Software development effort estimationusing fuzzy

logic - A survey”, IEEE International Conference on FuzzySystems and Knowledge Discovery,

vol.1, pp: 421-427, 2008.

[16] D. Kumar, D. Kashyap, K. K. Mishra and A. K. Misra, “Security Vs cost: An issue of multi- objective

optimization for choosing PGP algorithms”, IEEE ICCCT-2010, India, 2010

