

ISSN: 2349-5197 Impact Factor: 2.715

International Journal of Research Science & Management

GENERALIZED B-STRONGLY B*-SEPARATION AXIOMS IN TOPOLOGICAL SPACES

P.Selvan* And M.J.Jeyanthi

*Department of Mathematics, Aditanar college of Arts and Science, Tiruchendur, Tamilnadu, India.

DOI: 10.5281/zenodo.1039585

Keywords: gbsb*-T_k(k=0,1,2,1/2), gbsb*-D_k(k=0,1,2)

Abstract

The purpose of this paper is to introduce a new class of spaces via gbsb*-open sets and gbsb*-difference sets. Further we give some basic properties and their various characterizations

Mathematics Subject classification 2010: 54A05.

Introduction

D.Andrijevic[1] introduced the concept of b-open sets and characterized its topological properties. Caldas and Jafari [2], introduced and studied $b-T_0$, $b-T_1$, $b-T_2$, $b-D_0$, $b-D_1$ and $b-D_2$ via b-open sets after that Keskin and Noiri [5], introduced the notion of $b-T_{1/2}$. A.Poongothai and P.Parimelazhagan,[6] introduced sb*-closed sets and we extend this concept into gbsb*-open sets[7].

In this chapter, we introduce a new classes of spaces called $gbsb^*-T_k$ spaces, for k=0, 1, 2, 1/2, $gbsb^*-D_k$ spaces, for k=0,1,2 and $gbsb^*$ -spaces. Also we study some basic properties and their various characterizations.

Preliminaries

Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise mentioned. (X, τ) will be replaced by X if there is no changes of confusion. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. We recall the following definitions and results.

Definition 2.1.[1] Let (X, τ) be a topological space. A subset A of the space X is said to be b-open if $A\subseteq int(cl(A))\cup cl(int(A))$ and b-closed if $int(cl(A))\cap cl(int(A))\subseteq A$.

Definition 2.2. Let (X, τ) be a topological space and $A \subseteq X$. The b-closure of A, denoted by bcl(A) and is defined by the intersection of all b-closed sets containing A.

Definition 2.3.[6] Let (X, τ) be a topological space. A subset A of X is said to be strongly b*-closed (briefly sb*-closed) if cl(int(A))) \subseteq U whenever A \subseteq U and U is b-open in (X, τ) .

Definition 2.4.[7] A subset A of a topological space (X, τ) is called a generalized b-strongly b*-closed set (briefly,gbsb*-closed) if bcl(A) \subseteq U whenever A \subseteq U and U is sb*-open in (X, τ) . The collection of all gbsb*-closed sets of X is denoted by gbsb*-C(X, τ).

Definition 2.5.[7] The complement of the gbsb*-closed set is a gbsb*-open set. The collection of all gbsb*-open sets of X is denoted by $gbsb*-O(X,\tau)$.

Definition 2.6.[8] Let A be a subset of a topological space (X, τ) . Then the union of all gbsb*-open sets contained in A is called the gbsb*-interior of A and it is denoted by gbsb*int(A). That is gbsb*int(A)=U{V:V} A and V \in gbsb*-O(X)}.

http:// www.ijrsm.com

ISSN: 2349-5197 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

Definition 2.7.[8] Let A be a subset of a topological space (X, τ) . Then the intersection of all gbsb*-closed sets in X containing A is called the gbsb*-closure of A and it is denoted by gbsb*cl(A). That is gbsb*cl(A)= \cap {F: A \subseteq F and F \in gbsb*-C(X, τ)}.

Theorem 2.8.[8] Let A be a subset of a topological space (X, τ) . Then

- (i) A is gbsb*-open if and only if gbsb*int(A)=A.
- (ii) A is gbsb*-closed if and only if gbsb*cl(A)=A.

Theorem 2.9.[7] For every element x in a space X, $X \setminus \{x\}$ is either gbsb*-closed or sb*-open.

Theorem 2.10.[6] Every closed set is sb*-closed.

Definition 2.11.[7] Let X be a topological space and let $x \in X$. A subset N of X is said to be a gbsb*-neighbourhood (shortly, gbsb*-nbhd) of x if there exsits a gbsb*-open set U such that $x \in U \subseteq N$.

Generalized b-strongly b*-Tk spaces

Definition 3.1. A topological space (X, τ) is said to be

- (i) gbsb*-T₀ if for each pair of distinct points x, y in X, there exists a gbsb*-open set U in X such that either x∈U and y∉U ssor x∉U and y∈U.
- (ii) gbsb*-T₁ if for each pair of distinct points x, y in X, there exist two gbsb*-open sets U in X and V such that x∈U but y∉U and x∉V and y∈V.
- (iii) gbsb*-T₂ if for each pair of distinct points x, y in X, there exist two disjoint gbsb*-open sets U and V in X such that x∈U but y∉U and x∉V and y∈V.
- (iv) $gbsb*-T_{1/2}$ if every gbsb*-closed set is sb*-closed.
- (v) gbsb*-space if every gbsb*-open set is open.

Theorem 3.2. A topological space (X,τ) is gbsb*-T₀ if and only if for each pair of distinct points x, y in X, gbsb*cl({x}) \neq gbsb*cl({y}).

Proof: Necessity: Suppose X is $gbsb^*-T_0$ and x,y are any two distinct points of X. Then there exists a $gbsb^*$ -open set U containing x or y, say x but not y. Since U is $gbsb^*$ -open, X\U is a $gbsb^*$ -closed set which does not contain x but contains y. Since $gbsb^*cl(\{y\})$ is the smallest $gbsb^*$ -closed set containing y, $gbsb^*cl(\{y\})\subseteq X\setminus U$. Then $x\notin gbsb^*cl(\{y\})$. Hence $gbsb^*cl(\{x\})\neq gbsb^*cl(\{y\})$.

Sufficiency: Suppose that $x,y \in X$ with $x \neq y$ and $gbsb*cl(\{x\})\neq gbsb*cl(\{y\})$. Then there exists a point $z\in X$ such that $z\in gbsb*cl(\{x\})$ but $z\notin gbsb*cl(\{y\})$. Now, we claim that $x\notin gbsb*cl(\{y\})$. If $x\in gbsb*cl(\{y\})$, then $gbsb*cl(\{x\})\subseteq gbsb*cl(\{y\})$. This implies, $z\in gbsb*cl(\{y\})$, which contradicts $z\notin gbsb*cl(\{y\})$. Therefore $x\notin gbsb*cl(\{y\})$. Since $gbsb*cl(\{y\})$ is gbsb*-closed set containing y but not x, then $X\setminus gbsb*cl(\{y\})$ is a gbsb*-closed set containing y but not x, then $X\setminus gbsb*cl(\{y\})$ is a gbsb*-closed.

Theorem 3.3. A topological space (X,τ) is gbsb*-T₁ if and only if the singletons are gbsb*-closed sets.

Proof: Let (X,τ) be a gbsb*-T₁ space and x be any point of X. Let $y \in X \setminus \{x\}$. Then $x \neq y$ and so there exists a gbsb*-open set U_y containing y but not x. That is $y \in U_y \subseteq X \setminus \{x\}$. This implies, $X \setminus \{x\} = \bigcup \{U_y/y \in X \setminus \{x\}\}$. Since the union of gbsb*-open sets is gbsb*-open, then $X \setminus \{x\}$ is gbsb*-open containing y but not x. Hence $\{x\}$ is gbsb*-closed in X. Conversely, suppose $\{p\}$ is gbsb*-closed, for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Then $y \in X \setminus \{x\}$ and $x \in X \setminus \{y\}$. Since $\{x\}$ and $\{y\}$ are gbsb*-closed sets in X, then $X \setminus \{x\}$ and $X \setminus \{y\}$ are gbsb*-open sets in X. Thus, we have a gbsb*-open set containing x but not y and a gbsb*-open set containing y but not x. Hence X is a gbsb*-T₁ space.

http:// www.ijrsm.com

ISSN: 2349-5197 Impact Factor: 2.715

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

Theorem 3.4. A topological space (X,τ) is gbsb*- $T_{1/2}$ if each singleton $\{x\}$ of X is either sb*-closed or sb*-open.

Proof: Let (X,τ) is a gbsb*-T_{1/2} space.

Case (i): Suppose $\{x\}$ is not sb*-closed. Then X\{x} is not sb*-open. By Theorem 2.9, X\{x} is gbsb*-closed. Since X is a gbsb*-T_{1/2} space, then X\{x} is sb*-closed and hence $\{x\}$ is sb*-open.

 $\label{eq:case (ii): Suppose $$x$ is not sb*-open. Then X $$x$ is not sb*-closed. By Theorem 2.9, X $$x$ is gbsb*-open in X. Since X is a gbsb*-T_{1/2} space, then X $$x$ is sb*-open and hence $$x$ is sb*-closed. $$$

Theorem 3.5. The following statements are equivalent for a topological space X.

- (i) X is $gbsb*-T_2$.
- (ii) For each $x \in X$ and $y \neq x$, there exists a gbsb*-open set U containing x such that $y \notin gbsb*cl(U)$.
- (iii) For each $x \in X$, $\cap \{gbsb*cl(U)/U \in gbsb*-O(X, \tau) \text{ and } x \in U\} = \{x\}.$

Proof:

(i) \Rightarrow (ii): Suppose X is gbsb*-T₂. Then for x,y \in X with x \neq y. Then there exists disjoint gbsb*-open sets U and V containing x and y respectively. Since V is gbsb*-open, then X\V is gbsb*-closed containing U. Hence gbsb*cl(U) \subseteq X\V. Since y \in V, then y \notin X\V and hence y \notin gbsb*cl(U).

(ii) \Rightarrow (iii): If there exists an element $y \neq x$ in X such that $y \in \bigcap \{gbsb*cl(U)/U \in gbsb*-O(X) \text{ and } x \in U\}$, then $y \in gbsb*cl(U)$ for every gbsb*-open set U containing x. This contradicts our assumption. So there exists no such an element y. This proves (iii).

(iii)⇒(i): Let x,y∈X with x≠y. Then by our assumption, there exists a gbsb*-open set U containing x such that $y\notin$ gbsb*cl(U). Let V=X\gbsb*cl(U). Then V is gbsb*-open set containing y. Also x∈U and U∩V= ϕ . Thus we have a disjoint gbsb*-open sets U and V containing x and y respectively. Hence X is a gbsb*-T₂ space.

Remark 3.6. Every gbsb*-T₂ space is gbsb*-T₁.

Theorem 3.7. Every gbsb*-space is gbsb*-T_{1/2}.

Proof: Let (X,τ) be a gbsb*-space and A be any gbsb*-closed set in X. Then X\A is gbsb*-open in X. Since X is gbsb*-space, then X\A is open in X and so A is closed. By Theorem 2.10, A is sb*-closed. Since shows that X is gbsb*-T_{1/2}.

Generalized b-strongly b*-D_k spaces

Definition 4.1. A subset A of a topological space X is called a gbsb*-difference set(briefly gbsb*-D-set) if there exists U, V \in gbsb*-O(X) such that U \neq X and A=U\V.

Theorem 4.2. Every proper gbsb*-open set is a gbsb*-D-set.

Proof: Let A be any proper gbsb*-open subset of a topological space X. Take U=A and V= ϕ . Then A=U\V and U \neq X. Hence A is gbsb*-D-set.

Remark 4.3. The converse of the above theorem need not be true which is shown in the following example.

Example 4.4. Let X={a,b,c,d} with a topology $\tau = \{\varphi, \{a,b\}, \{a,b,c\}, X\}$. Then gbsb*-O(X, τ)={ $\varphi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, X\}$. Take U={a,b,d} and V={a,b,c}. Then U≠X and A=U\V={a,b,d}\{a,b,c}={d} is gbsb*-D-set but not a gbsb*-open set.

Definition 4.5. A topological space (X, τ) is said to be

(i) gbsb*-D₀ if for any pair of distinct points x and y of X there exists a gbsb*-D-set of X containing x but not y or a gbsb*-D-set of X containing y but not x.

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

ISSN: 2349-5197 Impact Factor: 2.715

- (ii) gbsb*-D₁ if for any pair of distinct points x and y of X there exists a gbsb*-D-set of X containing x but not y and a gbsb*-D-set of X containing y but not x.
- (iii) gbsb*-D₂ if for any pair of distinct points x and y of X, there exist disjoint gbsb*-D-sets G and E of X containing x and y respectively.

Theorem 4.6. In a topological space (X, τ) ,

- (i) if (X,τ) is gbsb*-T_k, then it is gbsb*-D_k, for k = 0, 1, 2.
- (ii) if (X,τ) is gbsb*-D_k, then it is gbsb*-D_{k-1}, for k = 1, 2.

Proof.

- (i) First we prove the result for k=0. Suppose (X, τ) is gbsb*-T₀. Then for each pair of distinct points x, y in X, there exists a gbsb*-open set U such that either x∈U and y∉U or y∈U and x∉U. By Theorem 4.2, U is gbsb*-D-set in X. Then we have for each pair of distinct points x, y in X, there exists a gbsb*-D-set U such that either x∈U and y∉U or y∈U and x∉U. Hence (X,τ) is a gbsb*-D₀ space. Similarly we can prove that every gbsb*-T_k space is gbsb*-D_k space, for k=1,2.
- (ii) Let k=2. Suppose (X,τ) is a gbsb*-D₂ space. Then for any pair of distinct points x and y of X, there exists disjoint gbsb*-D-sets U and V of X containing x and y respectively. That is for any pair of distinct points x and y of X, there exists a gbsb*-D-set U of X containing x but not y and a gbsb*-D-set V of X containing y but not x. Hence (X,τ) is a gbsb*-D₁ space. Similarly we can prove that every gbsb*-D₁ space is a gbsb*-D₀ space.

Theorem 4.7. A space X is $gbsb^*-D_0$ if and only if it is $gbsb^*-T_0$.

Proof. Necessity: Suppose that X is gbsb*-D₀. Then for each distinct pair x, $y \in X$ there is a gbsb*-D-set G containing x or y, say x but not y. Since G is gbsb*-D-set, then there are two gbsb*-open sets U₁ and U₂ such that U₁ $\neq X$ and G=U₁\U₂. Since x \in G and y \notin G, then x \in U₁. For y \notin G, we have two cases,

- (a) y∉U₁
- (b) $y \in U_1$ and $y \in U_2$.

In case (a), $x \in U_1$ and $y \notin U_1$. In case (b), $y \in U_2$ and $x \notin U_2$. Thus in both cases we have for each pair of distinct points x and y in X, there exists a gbsb*-open set U_1 containing x but not y or a gbsb*-open set U_2 containing y but not x. Hence X is gbsb*-T₀.

Suffiency: Suppose (X,τ) is gbsb*-T₀. Then by Theorem 4.6(i), (X, τ) is gbsb*-D₀.

Theorem 4.8. A space X is gbsb*-D₁ if and only if it is gbsb*-D₂.

Proof: Necessity: Let x, $y \in X$, with $x \neq y$. Then there exist gbsb*-D -sets G_1, G_2 in X such that $x \in G_1$, $y \notin G_1$ and $y \in G_2$, $x \notin G_2$. Since G_1 and G_2 are gbsb*-D-sets, then $G_1 = U_1 \setminus U_2$ and $G_2 = U_3 \setminus U_4$, where U_1 , U_2 , U_3 and U_4 are gbsb*-open sets in X. From $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately.

(i)Suppose $x \notin U_3$. For $y \notin G_1$ we have two sub-cases:

- (a) Suppose y∉U₁. Since x∈U₁\U₂, it follows that x∈U₁\(U₂∪U₃), and since y∈U₃\U₄ we have y∈U₃\(U₁∪U₄). Since the union of gbsb*-open sets is gbsb*-open set, then U₂∪U₃ and U₁∪U₄ are gbsb*-open sets. Also (U₁\(U₂∪U₃))∩(U₃\(U₁∪U₄))=φ. Thus we have disjoint gbsb*-D-sets U₁\(U₂∪U₃) and U₃\(U₁∪U₄) containing x and y respectively.
- (b) If y∈U₁ and y∈U₂, we have x∈U₁\U₂, and y∈U₂. Also (U₁\ U₂)∩U₂ = φ. Thus we have disjoint gbsb*-D-sets U₁\U₂ and U₂ containing x and y respectively.

(ii)Suppose $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$ and $x \in U_4$. Hence $(U_3 \setminus U_4) \cap U_4 = \varphi$. Thus we have disjoint gbsb*-D-sets U_4 and $U_3 \setminus U_4$ containing x and y respectively. Hence X is gbsb*-D₂.

http:// www.ijrsm.com

ISSN: 2349-5197 Impact Factor: 2.715

3

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

Sufficiency: Suppose X is gbsb*-D₂. Then by Theorem 4.6(ii), X is gbsb*-D₁.

Definition 4.9. A point $x \in X$ which has only X as the gbsb*-neighbourhood is called a gbsb*-neat point.

Theorem 4.10. For a gbsb*- T_0 space (X, τ) the following are equivalent:

- (i) (X,τ) is gbsb*-D₁.
- (ii) (X,τ) has no gbsb*-neat point.

Proof. (i) \Rightarrow (ii). Since (X, τ) is gbsb*-D₁, then each point x of X is contained in a gbsb*-D-set A = U\V and thus in U. By definition U \neq X. This implies that x is not a gbsb*-neat point.

 $(ii) \Rightarrow (i)$ Suppose (X,τ) has no gbsb*-neat point. Let x and y be distinct points in X. Since X is gbsb*-T₀, then there exists a gbsb*-open set U containing x or y, say x. Since $y \notin U$, then $U \neq X$. By Theorem 4.2, U is a gbsb*-D-set. Since X has no gbsb*neat point, then y is not a gbsb*-neat point. This means that there exists a gbsb*-neighbourhood V of y such that $V \neq X$. Since V is a gbsb*-nbhd of y, there exists a gbsb*-open set G such that $y \in G \subseteq V$. Thus $y \in G \setminus U$ but not x. Also $G \setminus U$ is a gbsb*-D-set. Hence X is a gbsb*-D₁ space.

Corollary 4.11. A gbsb*- T_0 space X is not gbsb*- D_1 if and only if there is a unique gbsb*-neat point in X.

Proof: Suppose (X, τ) be a gbsb*-T₀ space. But (X, τ) is not a gbsb*-D₁. Then by the above theorem (X, τ) has a gbsb*-neat point. Now we have to prove the uniqueness. Suppose x and y are two different gbsb*-neat points in X. Since X is gbsb*-T₀, at least one of x and y, say x, has a gbsb*-open set U containing x but not y. then U is a gbsb*-nbhd of x and U \neq X. Therefore x is not a gbsb*-neat point which contradicts x is a gbsb*-neat point. Hence x=y.

References

- [1] D.Andrijevic, On b-open sets, Mat. Vesnik 48(1996), 59-64.
- [2] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi J. Math., 2(2007), 11-19.
- [3] A. Keskin and T. Noiri, On bD-sets and associated separation axioms, Bulletin of the Iranian Math. Soc., 35(1) (2009), 179-198.
- [4] I. L. Reilly and M. K. Vamanamurthy, On α -sets in topological spaces, Tamkang J. Math. 16 (1985), 7–11.
- [5] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and week precontinuous mappings, Proc. Math. Phys. So., Egypt, 53(1982), 47-53.
- [6] A.Poongothai and P.Parimelazhagan, sb*-closed sets in a topological spaces, Int. Journal of Math. Analysis 3(47),(2012), 2325-2333.
- [7] P. Selvan and M.J.Jeyanthi, Generalized b-strongly b*-closed sets in topological spaces, Int. Journal of Math. Archive-8(5),(2017), .
- [8] P. Selvan and M.J.Jeyanthi, More on gbsb*-closed and sets in topological spaces, Scholars Journal of Physics, Mathematics and Statistics,4(13), 2017,113-120