

SOME RESULTS OF ALTERNATING SYSTEMS

Gengrong Zhang^{1*,} Jiankang Cheng², Xiaoting Li³ College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, 530004, China *Correspondence Author: gxumathzgr@126.com

Keywords: alternating system; pseudo periodic points;

Abstract

In this paper, we talk about the relationship of [f,g] and [g,f]. We show that : 1. $\omega([f,g]) = \omega([g,f])$, $\omega([f,g]) = \omega(g \circ f) \cup \omega(f \circ g)$; 2. $\omega([f,g]) \subset$ $\Omega([f,g]) \cup \Omega([g,f])$.

Introduction

Let (X,d) be a compact metric space. Denoted by $C^0(X)$ the set of all continuous maps from X to itself. Let $f, g \in C^0(X)$, f^0 is the identity map, $f^{n+1} =$

 $f \circ f^n$. Denoted by $g \circ f$ the composition of g and f. Let Z_+ be the set of all positive integers, $N = \{0\} \bigcup Z_+$. Denoted by $\#\{A\}$ the cardinality of A, $\aleph_0 = \#\{N\}$. Let \overline{A} be the closure of A.

Let (X, [f, g]) be the alternating systems (see [1] for the definition). For any x

 $\in X$, write $O(x, [f, g]) = \{x, f(x), gf(x), fgf(x), \cdots\}$, we call O(x, [f, g]) the orbit of x under [f, g]. For any $n \in N$, write

$$F_n(x) = \begin{cases} (gf)^k , & n = 2k \\ (f(gf)^k)(x) , & n = 2k+1 \end{cases}$$

So sometimes we can replace [f,g] by $\{F_n\}_{n\in\mathbb{N}}$, therefore the alternating system $(X, [f,g]) = (X, \{F_n\}_{n\in\mathbb{N}})$ and $O(x, [f,g]) = \{F_n(x)\}_{n\in\mathbb{N}}$.

Obviously,
$$O(x, [f, g]) = \{x, f(x), g f(x), f g f(x), \cdots\}$$

= $O(x, g \circ f) \cup O(f(x), f \circ g)$
= $O(x, g \circ f) \cup f(O(x, g \circ f))$

Similarly, write

$$G_n(x) = \begin{cases} (fg)^k , & n = 2k \\ (g(fg)^k)(x) , & n = 2k+1 \end{cases}$$

The orbit of x under f, the set of periodic points under f, the set of recurrent points under f, the set of non-wondering points under f, the ω -limit set of x un-

der f will be denoted by O(x, f), P(f), R(f), $\Omega(f)$, $\omega(x, f)$, respectively (see [3] for the detailed definitions).

http:// www.ijrsm.com

2. Definitions and lemmas

Definition 2.1 Denoted by $\omega(x, [f, g])$ the set of all limit points of $\{F_n(x)\}_{n \in \mathbb{N}}$, write $\omega([f, g]) = \bigcup \omega(x, [f, g])$.

Definition2.2 Define the set of pseudo periodic points under alternating system $\widetilde{P}([f,g]) = \{x \in X | x \in \omega(x, [f,g]), \#\{\omega(x, [f,g])\} < \aleph_0\}.$

Definition 2.3 Define the set of recurrent points under alternating system R([f,g]) =

$$\{x \in X | x \in \omega(x, [f, g])\}.$$

Obviously, $\widetilde{P}([f,g]) \subset R([f,g]) \subset \omega([f,g]).$

Definition 2.4 A point $x \in X$ is said to be non-wondering under alternating system if for any neighborhood U of x there exists $n \in Z_+$ such that $F_n(U) \cap U \neq \phi$. Denoted by $\Omega([f,g])$ the set of all non-wondering points under alternating system.

Lemma 2.5^[2] Let (X,d) be a compact metric space, $f, g \in C^0(X)$, then

- (1) For any $n \in Z_+$, we have $F_n = G_{n-1} \circ f$, $G_n = F_{n-1} \circ g$.
- (2) If *n* is even, then $F_{n+t} = F_t \circ F_n$.
- (3) If *n* is odd, then $F_{n+t} = G_t \circ F_n$.

Lemma 2.6^[2]
$$\omega(x, [f, g]) = \omega(x, g \circ f) \cup \omega(f(x), f \circ g).$$

Lemma 2.7^[2] $\omega(f(x), f \circ g) = f(\omega(x, g \circ f)).$

Lemma 2.8^[1] $\omega(x, f) \neq \phi, \overline{\omega(x, f)} = \omega(x, f).$

Lemma 2.9^[1] (1) $\widetilde{P}([f,g]) \subset P(g \circ f) \cup P(f \circ g);$

(2) $P(g \circ f) \subset \widetilde{P}([f,g]);$ (3) $g(P(f \circ g)) \subset \widetilde{P}([f,g]);$ (4) $f(P(g \circ f)) = P(f \circ g).$

Lemma 2.10^[4] Let f be a continuous map of compact interval to itself. If the set of periodic points of f is a closed set, then every chain recurrent point is periodic.

Lemma 2.11^[2] $\omega([f,g]) \subset \omega(g \circ f) \cup \omega(f \circ g).$

3. Main results

Proposition 3.1 $\omega(x, [f, g]) \neq \phi$, $\overline{\omega(x, [f, g])} = \omega(x, [f, g])$. **Proof :** Combine Lemma2.6 with Lemma2.8, it is trivial.

Proposition 3.2
$$\omega(x, [f, g]) = \bigcap_{n \ge 0} \overline{\{F_n(x), F_{n+1}(x), F_{n+2}(x), \cdots\}}.$$

Proof : We firstly prove $\omega(x, [f, g]) \subset \bigcap_{n \ge 0} \overline{\{F_n(x), F_{n+1}(x), F_{n+2}(x), \cdots\}}.$ For any $y \in \mathbb{R}$

 $\omega(x, [f, g])$, there exists $m_k \to \infty$ such that $F_{m_k}(x) \to y$, then for any $n \in N$, there exists $k \in Z_+$ such that $m_k \ge n$, hence

$$y \in \bigcap_{n\geq 0} \overline{\{F_n(x), F_{n+1}(x), F_{n+2}(x), \cdots\}}.$$

http:// www.ijrsm.com

Now we prove $\omega(x, [f, g]) \supset \bigcap_{k \in \mathbb{Z}} \overline{\bigcup_{k \in \mathbb{Z}} \{F_k(x)\}}$. For any $y \in \bigcap_{k \in \mathbb{Z}} \overline{\bigcup_{k \in \mathbb{Z}} \{F_k(x)\}}$, sup-

pose $y \notin \omega(x, [f, g])$, there exists a neighborhood U of y such that for any $n \in N$,

 $F_n(x) \notin U$, which is contrary to the hypothesis that for any y, we have

$$y \in \bigcap_{n \ge 0} \overline{\{F_n(x), F_{n+1}(x), F_{n+2}(x), \cdots\}}.$$

Hence $y \in \mathcal{O}(x [f, a])$

Hence $y \in \omega(x, |f, g|)$.

Proposition 3.3 (1) If *n* is even, then $\omega(x, [f, g]) = \omega(F_n(x), [f, g]);$

(2) If *n* is odd, then $\omega(x, [f, g]) = \omega(F_n(x), [g, f])$.

Proof: (1) Suppose that *n* is even. We prove $\omega(x, [f, g]) \subset \omega(F_n(x), [f, g])$ firstly. If $y \in \omega(x, [f, g])$, there exists $n_k \ge n$, $n_k \to \infty$ such that $F_{n_k}(x) \to y$, by Lemma 2.5 (2), we have $F_{n_k-n}(F_n(x)) \to y$, hence $y \in \omega(F_n(x), [f, g])$.

Now we prove $\omega(x, [f, g]) \supset \omega(F_n(x), [f, g])$. If $z \in \omega(F_n(x), [f, g])$, there exists $m_k \to \infty$ such that $F_{m_k}(F_n(x)) \to z$, by Lemma 2.5 (2), we have $F_{m_k+n}(x) \to z$. Hence $z \in \omega(x, [f, g])$.

(2) Similar to the proof of (1), by Lemma 2.5 (3), the proof of (2) is trivial.

Theorem 3.4 $\omega([f,g]) = \omega([g,f]).$ **Proof**: We prove $\omega([f,g]) \subset \omega([g,f])$ only. For any $x \in \omega([f,g])$, there exists $y \in X$ and $n_k \to \infty$ such that $F_{n_k}(y) \rightarrow x$, by Lemma2.5(1), we have $(G_{n_{k-1}} \circ f)(y)$ $=G_{n_{k-1}}(f(y)) \rightarrow x$, thus $x \in \omega([g, f])$.

Proposition 3.5 $\widetilde{P}([f,g]) \cup \widetilde{P}([g,f]) = P(g \circ f) \cup P(f \circ g).$ By Lemma2.9(1), we have $\widetilde{P}([f,g]) \subset P(g \circ f) \cup P(f \circ g)$, exchange f,g, Proof : then $\widetilde{P}([g, f]) \subset P(g \circ f) \cup P(f \circ g)$, hence $\widetilde{P}([f,g]) \cup \widetilde{P}([g,f]) \subset P(g \circ f) \cup P(f \circ g)$ (1) By Lemma 2.9 (2), we have $P(g \circ f) \subset \tilde{P}([f,g])$, exchange f,g, then $P(f \circ g) \subset \subset \tilde{P}([g,f])$, hence $P(g \circ f) \cup P(f \circ g) \subset \widetilde{P}([f,g]) \cup \widetilde{P}([g,f])$ (2) Combine (1) with (2), we have $P(g \circ f) \cup P(f \circ g) \subset \widetilde{P}([f,g]) \cup \widetilde{P}([g,f]) \subset P(g \circ f) \cup P(f \circ g).$ Hence $\widetilde{P}([f,g]) \cup \widetilde{P}([g,f]) = P(g \circ f) \cup P(f \circ g).$

Theorem 3.6 (1) $R([f,g]) \subset \Omega([f,g]);$ (2) $\omega(g \circ f) \subset \Omega(g \circ f) \subset \Omega([f,g]);$ (3) $f(\Omega(g \circ f)) \subset \Omega(f \circ g);$ (4) $\Omega([f,g])$ is closed;

http:// www.ijrsm.com

(C) International Journal of Research Science & Management

(5) $\Omega([f,g]) \subset \Omega(g \circ f) \cup \Omega(f \circ g)$

Proof : (1) and (2) are evident by definitions.

(3) For any $\varepsilon > 0$, by the continuity of f, there exists $\delta > 0$ such that $f(B(x,\delta)) \subset B(f(x),\varepsilon)$. For any $x \in \Omega(g \circ f)$, By the definition, for $\delta > 0$, there exists $y \in B(x,\delta)$ and $n \in Z_+$ such that $(g \circ f)^n(y) \in B(x,\delta)$. So $f(y) \in B(f(x),\varepsilon)$, $f(g \circ f)^n(y) = (f \circ g)^n(f(y)) \in B(f(x),\varepsilon)$. Hence $x \in \Omega(f \circ g)$.

(4) For any $x \in X - \Omega([f,g])$, by the definition, there exists some neighborhood U of x such that for any $n \in Z_+$, $F_n(U) \cap U = \phi$. Thus, for any $y \in U$, $y \in X - \Omega([f,g])$. So $X - \Omega([f,g])$ is open. Hence $\Omega([f,g])$ is closed.

(5) Suppose $x \in \Omega([f,g])$, U is an arbitrary neighborhood of x. If the set $\{n \in Z_+: F_n(U) \cap U \neq \phi, n = 2k \text{ for some } k \in Z\}$ is infinite, there exist even numbers $n_1 < n_2$ and $y \in U$ such that $(g \circ f)^{n_1}(y) \in U, (g \circ f)^{n_2}(y) \in U$, then $(g \circ f)^{n_2}(y) = (g \circ f)^{n_2 - n_1} ((g \circ f)^{n_1}(y)) \in U$. Hence $x \in \Omega(g \circ f)$.

If the set $\{n \in Z_+: F_n(U) \cap U \neq \phi, n = 2k + 1 \text{ for some } k \in Z\}$ is infinite, there exist odd numbers $n_1 < n_2$ and $y \in U$ such that $f(g \circ f)^{n_1}(y) = (f \circ g)^{n_1}(f(y)) \in U$ and $f(g \circ f)^{n_2}(y) \in U$, then $f(g \circ f)^{n_2}(y) = (f \circ g)^{n_2 - n_1} ((f \circ g)^{n_1}(f(y))) \in U$. Hence $x \in \Omega(f \circ g)$.

In conclusion, $\Omega([f,g]) \subset \Omega(g \circ f) \cup \Omega(f \circ g)$.

Corollary 3.7 $\Omega([f,g]) \cup \Omega([g,f]) = \Omega(g \circ f) \cup \Omega(f \circ g).$ **Proof :** Similar to the proof of Proposition 3.5, by Theorem 3.6 (2) (5), it is evident.

Lemma 3.8 $\omega([f,g]) = \omega(g \circ f) \cup \omega(f \circ g)$. Proof: By Lemma 2.6, we have $\omega(g \circ f) \subset \omega([f,g])$. By Lemma 2.11, we have $\omega([f,g]) \subset \omega(g \circ f) \cup \omega(f \circ g)$. So it remains to show that $\omega(f \circ g) \subset \omega([f,g])$.

For any $x \in \omega(f \circ g)$, there exists $y \in X$ and $n_k \to \infty$ such that $(f \circ g)^{n_k}(y)$

→ x, so we have $f(g \circ f)^{n_k - 1}(g(y)) \to x$. Hence $x \in \omega([f,g])$. Similarly, $\omega(g \circ f) \subset \omega([f,g])$. Hence $\omega([f,g]) \supset \omega(g \circ f) \cup \omega(f \circ g)$.

Theorem 3.9 $\omega([f,g]) \subset \Omega([f,g]) \cup \Omega([g,f]).$ **Proof :** By Lemma 3.8, we have $\omega([f,g]) = \omega(g \circ f) \cup \omega(f \circ g)$. Thus $\omega([f,g]) = \omega(g \circ f) \cup \omega(f \circ g) \subset \Omega(g \circ f) \cup \Omega(f \circ g) \subset \Omega([f,g]) \cup \Omega([g,f]).$

http://www.ijrsm.com

Proposition 3.10 If X = [0,1], $\tilde{P}([f,g]) \cap \tilde{P}([g,f]) = \phi$, $\tilde{P}([f,g])$ and $\tilde{P}([g,f])$ are closed, then $\tilde{P}([f,g]) \cup \tilde{P}([g,f]) = \Omega([f,g]) \cup \Omega([g,f])$. **Proof :** If $\tilde{P}([f,g]) \cap \tilde{P}([g,f]) = \phi$, then by Lemma 2.9 (2), we have $P(g \circ f) \cap P(f \circ g) = \phi$. Science $\tilde{P}([f,g])$ and $\tilde{P}([g,f])$ are closed, by Theorem 3.5, we have $\tilde{P}([f,g]) = P(g \circ f) = \overline{P(g \circ f)}$ and $\tilde{P}([g,f]) = P(f \circ g) = \overline{P(f \circ g)}$. By Lemma 2.10, $\tilde{P}([f,g]) = P(g \circ f) = \Omega(g \circ f)$ and $\tilde{P}([g,f]) = P(f \circ g) = \Omega(f \circ g)$. It follows by Corollary 3.7 that $\tilde{P}([f,g]) \cup \tilde{P}([g,f]) = \Omega([f,g]) \cup \Omega([g,f])$.

Corollary 3.11 If X = [0,1], $\tilde{P}([f,g]) \cap \tilde{P}([g,f]) = \phi$, $\tilde{P}([f,g])$ and $\tilde{P}([g,f])$ are closed, then $\tilde{P}([f,g]) \cup \tilde{P}([g,f]) = R([f,g]) \cup R([g,f]) = \omega([f,g]) = \Omega([f,g]) \cup \Omega([g,f])$. **Proof :** Combine Theorem 3.4, Theorem 3.9 and Proposition 3.10, it is evident.

Example 3.12 Let $X = [-1,1], a_n = 1 - \frac{1}{n+1}, n = 1,2,3\cdots$. Define (1) f(x) = x, for any $x \in [0,1]$; (2) $f(-1) = 1, f(-a_n) = a_{n+1}, n = 1,2,3\cdots$ and f is linear on $[-a_1,0]$ and each $[-a_{n+1}, -a_n], n = 1,2,3\cdots$; (3) g(x) = -x, for any $x \in [0,1]$; (4) g(x) = x, for any $x \in [-1,1]$. It is easy to show that $P(g \circ f) = \omega(g \circ f) = \omega(0, g \circ f) = \Omega(g \circ f) = \{-1\}$; $P(f \circ g) = \omega(f \circ g) = \omega(0, f \circ g) = \Omega(f \circ g) = \{1\}$; For any $x \in X$, $\omega(x, [f, g]) = \omega(x, [g, f]) = \Omega([g, f]) = \{-1,1\}$.

Proposition 3.13 Let $\Gamma = \omega$ or Ω , there exists f and g such that $\Gamma(g \circ f)$ is a proper subset of $\Gamma([f,g])$. **Proof :** By Example 3.12, $\omega(g \circ f) = \{-1\}$ and $\omega([f,g]) = \bigcup_{x \in X} \omega(x, [f,g]) = \{-1,1\}$. Hence $\omega(g \circ f)$ is a proper subset of $\omega([f,g])$. Similarly, $\Omega(g \circ f)$ is a proper subset of $\Omega([f,g])$.

Proposition 3.14 There exists f and g such that $P(g \circ f)$ is a proper subset of $\tilde{P}([f,g])$. **Proof :** By Example 3.12, $P(g \circ f) = \{-1\}$ and $\tilde{P}([f,g]) = \{-1,1\}$. Hence $P(g \circ f)$ is a proper subset of $\tilde{P}([f,g])$.

Proposition 3.15 There exists f and g such that $\Omega([f,g]) = \Omega([g,f])$. **Proof :** By Example 3.12, $\Omega([f,g]) = \Omega([g,f]) = \{-1,1\}$.

Proposition 3.16 There exists f and g such that $\Omega(f \circ g)$ is a proper subset of $\Omega([f,g])$. **Proof :** By Example 3.12, $\Omega(f \circ g) = \{1\}$ and $\Omega([f,g]) = \{-1,1\}$. Hence $\Omega(f \circ g)$ is a proper subset of $\Omega([f,g])$.

http:// www.ijrsm.com (C) International Journal of Research Science & Management

Example 3.17 Let $X = \{-1,0,1\} \subset [-1,1]$, define f(-1) = 0, f(0) = 1, f(1) = g(1) = 1, g(0) = -1, g(-1) = -1. It is easy to show that (1) $\omega(-1, [f, g]) = \{-1,0\}, \omega(0, [f, g]) = \omega(1, [f, g]) = \{1\}$. (2) $\Omega(f \circ g) = \{0,1\}, \Omega([f, g]) = \{-1,1\}$.

Proposition 3.18 There exists f and g such that $P(f \circ g) \not\subset \widetilde{P}([f,g])$. **Proof :** By Example 3.12, $P(f \circ g) = \{0,1\}$ and $\widetilde{P}([f,g]) = \{-1,1\}$. Hence $P(f \circ g) \not\subset \widetilde{P}([f,g])$.

Proposition 3.19 There exists f and g such that $\Omega(f \circ g) \not\subset \Omega([f,g])$. **Proof :** By Example 3.12, $\Omega(f \circ g) = \{0,1\}$ and $\Omega([f,g]) = \{-1,1\}$. Hence $\Omega(f \circ g) \not\subset \Omega([f,g])$.

Proposition 3.20 There exists f and g such that $\omega([f,g]) \not\subset \Omega([f,g])$. **Proof :** By Example 3.12, $\omega([f,g]) = \bigcup_{x \in X} \omega(x, [f,g]) = \{-1,0,1\}$ and $\Omega([f,g]) = \{-1,1\}$. Hence $\Omega(f \circ g) \not\subset \Omega([f,g])$.

Acknowledgment

Project supported by NSFC(No: 11461002) and NSF of Guangxi Education Department(No: 2013ZD061).

References

- 1. D'Aniello E, Steele T H. The ω-limit sets of alternating systems[J]. Journal of Difference Equations and Applications, 2011, 17(12): 1793-1799.
- 2. Hailan Liang. Some dynamical properties of non-autonomous system. Master thesis: Guangxi University; 2012.
- 3. Gongfu Liao, Lidong Wang, Qinjie Fan. Iterate and chaos dynamic system [M]. Science publication.
- 4. Block L, Franke J E. The chain recurrent set for maps of the interval[J]. Proceedings of the American Mathematical Society, 1983, 87(4): 723-727.