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Abstract 

The problem of underdetermined blind source separation is usually addressed under the framework of sparse signal representation. 

This paper represents Compressive Sensing technique used for speech segregation that contains two stages. In the first stage we 

exploit a modified K-means method to estimate the unknown mixing matrix. The second stage is to separate the sources from the 

mixed signals using the estimated mixing matrix. In the second stage a two-layer sparsity model is used which assumes that the 

low frequency components of speech signals are sparse on K-SVD dictionary and the high frequency components are sparse on 

discrete cosine transformation (DCT) dictionary. In this way, we reconstruct the signals using L1-magic and GPSR algorithm. 

 

Introduction  
The task of BSS [1] is to recover the sources using observable sources. Here is the noise free mixing model of BSS is described as 

follows: 

                                x(t) A ( )s t                                 (1)
             

  

Where, A  RM×N is the mixing matrix which is unknown, S(t)  RN is original unknown source vector and X(t)  RM is the 

observed mixed data vector at discrete time instants. In this paper, we are going to discuss about undetermined case [1], [2] of 

BSS i.e., M < N. For the simplicity I have chosen M = 2 and N = 3. 

 
Fig 1 A diagrammatic representation of a mixing and an unmixing system 

 
From fig.1, it is clear that the undetermined problem is encountered where the number of the sources is greater than that of the 

mixtures. For this an effective method for this problem is to use the so-called sparse signal representation [3], assuming that the 

sources are sparse. 

Preliminary work 
To the simplest of my data, most of the proposed methods rely on the sparsity of signals in some domain, like the time-frequency 

(TF) domain. Some authors conjointly tried to use trained dictionaries to replace discrete cosine transformation (DCT) or fast 

Fourier transformation (FFT) dictionary which is fixed, and showed that the trained dictionaries perform better than the fixed 

dictionaries. 

Based on such a representation, a two-stage approach is usually used to recover the source signals. First, the unknown mixing 

matrix is estimated from the audio mixture data by assuming a mixing matrix randomly. Second, for the underdetermined problem 

we propose a new method for the source recovery in the second stage based on the emerging technique of compressed sensing 

(CS) [1], [2], [3]. The CS, that has attracted growing interests in signal process, is an efficient technique for data acquisition and 

reconstruction. It can randomly sample signals under Nyquist rate and then reconstruct the signal with a high probability. It  

provides potentially a powerful framework for computing a sparse representation of signals. It can randomly sample signals under 

Nyquist rate and then reconstruct the signal with a high probability. It provides potentially a strong framework for computing a 

sparse representation of signals. In this work, we analyse the similarity between the fundamental models for CS and BSS, and so 

develop an algorithm for source recovery based on their relations. 
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Compressive sensing & sparsity 
Compressive sensing 

Compressive Sensing [3] is one of the unique techniques of acquiring signals. CS provides for each sampling moreover as 

compression, in conjunction with coding of the supply data, at the same time. Also, signal reconstruction is also helps to recover 

our signal. These all advantages of CS are very important for the communication purpose. For Compressive Sensing, signals 

should be sparse. 

The fundamental mathematical formulation of CS is discussed here to build a CS framework for our demand. Let us assume that a 

1-D signal having N samples is measured in transform domain given by a linear mapping 

                               𝑦 = 𝐴𝑥                                      (2) 

Where, 𝐴 is consist of basis functions of N x N matrix such that 

                                      𝑥 = 𝐴−1𝑦                                              (3) 

In this case during measurement if only K samples of 𝑦 is measured and even if K is much lesser than N, CS frame work allows us 

to reconstruct 𝑥 from the incomplete information of  𝑦 exploiting the sparse nature of 𝑥. It is shown that in ref, if 𝑥 is S sparse and 

if the following rule (4) is also obeyed,  

                                   𝐾 ≥ 𝐶. 𝑆. 𝑙𝑜𝑔𝑁                                        (4) 

Where, C is a constant. 

Sparsity 

The selection of sparsifying operator B is that the question within the case of compressive sensing of speech and therefore the 

previous works are to define this B and an approach to resolve equation (6). It is shown that there is no guarantee that the 

operations like DFT, Wavelet decomposition etc sparsify the speech signal better than the classic speech analysis models like LPC 

analysis. 

Here, we are going to discuss about sparsity [4] of speech signal. So, sparsity means signals that are largely inhabited with zeros 

and have a small variety of non-zero elements known as sparse signals. A sparse representation of signal is the one where small 

number of coefficients contains large proportion of energy. 

 
Fig. 2 Observed Signal 

 
Fig. 3 Sparse Signal 

 

Fig. 2 represents the original samples signal which is highly populated with non-zero samples whereas fig. 3 represents its Fourier 

transform which contain large amount of zero samples. This is known as representation of sparse signal [4]. 

 

Estimating the mixing matrix by k-means algorithm 
K-means clustering [1] is a method of vector quantization originally from signal processing. The K-means algorithm is an 

algorithm to cluster n objects based on attributes into k partitions, where K < n. K is positive integer number. The grouping is done 

by minimizing the sum of squares of distances between data and the corresponding cluster centroid. 

Previously the mixing matrix is unknown. In this stage, we are going to estimate the mixing matrix by using singular value 

decomposition (SVD) [1] and K-means clustering [1] algorithm. In TF domain, 

                                     X AS                                       (5) 

Where, X and S are the TF coefficient of x(t) and s(t) respectively. At every TF point (w, t), we have 
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 As a signal is sparse, at a large proportion only one source is active so that 
1 2( , ) / ( , )X w t X w t  is approximately equal to

1 2/i ia a , i

= 1, 2, 3. Hence a scatter plot of 
1X vs. 

2X would cluster into three distinct lines such that ith  source corresponds to the line with 

gradient
1 2/i ia a , i = 1, 2, 3. Then we can use the K-means algorithm to obtain three clusters and estimate every column of matrix 

with an amplitude uncertainty. 

But, the assumed sparsity is hard to specify for all points. Here, we exploit SVD instead of histogram. We define the covariance 

matrix of TF mixture vectors: 

                         [ ]T T

X SR E XX AR A                               (7) 

 

 Where, 1
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 and we exploit SVD to XR : 

                               2 T

X i i iR a s a                                           (8) 

 

Where,  1 2,U u u  is the eigenvector matrix and 2 2 2 2

1 2 1 2{ , },diag        is the eigenvalue matrix. Here we estimate XR by 

frequency average in a ST window, i.e., { } (1/ ) ( , ) ( , )H H

wE XX l X w t X w t  , where l  is the length of ST window. If only the ith  

source is active in some ST window, then 

                       
'

2 2 '0, 0,( ),i i
s s i i                                       (9) 

                              2 H

x i i iR a s a                                           (10) 

Where, 
2

is is the power of ith  source. Under the assumption, the rank of XR is 1 and
1 20, 0   . Using this, (7) can be 

simplified as: 

                              2

1 1 1

H

XR u u                                         (11) 

Comparing (10) and (11), we can see that, 1u is the estimate of ia . We find that every ST window is corresponds to eigenvector 

1u and all of the 1u cluster into three different vectors corresponding to the columns of mixing matrix. 

But, sparsity assumption is not always satisfied. If we use all the three clusters of 1u , an inaccurate estimate will be got. There is a 

condition, whose corresponding ST window is not sparse, i.e., 
2 11 ( / ) ebs    where ebs denotes a real number close to 1. 

Therefore, we only use the reliable cluster samples and we can get a better estimate. It should be stated that, the problem of 

scaling and permutation uncertainty exists in the estimated matrix. 

 
Methodology 
GPSR (Gradient projection of sparse reconstruction) 

GPSR [5] algorithm is one of the best techniques to reconstruct the sparse signal. Many problems in signal processing and 

statistical inference involve finding sparse solution to under-determined linear system of equation. Basis Pursuit, the Least 

Absolute Shrinkage and Selection Operator (LASSO), wavelet based deconvolution, and Compressed Sensing is a few well-

known examples of this approach. 

It can be reconstructed with an overwhelming probability by minimizing 𝑙1 norm of 𝑥 and can be modeled as a convex 

unconstrained optimization problem given by  

                           𝑚𝑖𝑛⏟
                                      𝑥

 
1

2
‖𝑦 − 𝐴𝑥‖2

2 + 𝜏‖𝑥‖1                            (5) 

Where
nxR ,

kyR , A is an k n  matrix, τ is a nonnegative parameter. GPSR [5] is able to solve a sequence of    problems 

efficiently for a sequence of   values of τ. Once a solution has been obtained for a particular τ, it can be used as a “warm-start” for 
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a nearby value. Solutions can therefore be computed for a range of τ values for a small multiple of the cost of solving for a single τ 

value from a “cold start.”      

     This assumes x is sparse in time domain. If x is sparse in a transform domain 𝑥 = 𝐵𝑠 where as 𝐵 is also a N x N basis matrix 

and s is sparse then the objective function becomes 

                        𝑚𝑖𝑛⏟
                                    𝑥

 
1

2
‖𝑦 − 𝐴𝐵𝑠‖2

2 + 𝜏‖𝑠‖1                            (6) 

Here A is called sensing matrix and B is called sparsifying matrix and it is proved that A and B to be mutually non coherent for 

better reconstruction of x. 

There is alternative interpretation that includes operator A and B that works on x to produce the transformed output. Large scale 

implementation of CS algorithm needs implementation of these operators which are used to iteratively solve the optimization 

problem in (6). This helps the implementation to avoid representation of complex and large A and B matrices and also helps to use 

the prevailing quick blocks to see the transforms. 

Results 

We are able to separate original signals from mixed signal. To implement this we used three speech signals such as Bat, Boot,  But 

respectively. 
Original signals: 

 
Fig. 4 Plot of three originals speech signals 

Mixed signals: 

 

 
Fig. 5 Plot of mixed signals 

Separated signals:- 

 
Fig. 6 Plot of three separated speech signals 

L1-magic 
L1-Magic [6] is employed for recovery of sparse signals. The central results state that a sparse vector x0  RN may be recovered 

from a small number of linear measurements y = Ax0  RK where, K<<N by solving a convex program. 
For maximum computational efficiency, the solvers for every of the seven issues are implemented one by one. All of them have a 
similar basic structure, however, with the procedure bottleneck being the calculation of the Newton step. The code may be used in 
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either “small scale” mode, where the system is constructed explicitly and solved exactly, or in “large scale” mode, where an 
iterative matrix-free algorithm such as conjugate gradients (CG) [6] is used to approximately solve the system. 
For our experiment, we used ”Min- ℓ1 with equality constraints” issue [6]. To illustrate this, the ℓ1-Magic package includes m-
files for solving specific instances.  

Results 

Original Signals: 

 
Fig. 7 Plot of three originals speech signals 

Mixed Signals: 

 
Fig. 8 Plot of mixed signals 

Separated Signals: 

 
Fig. 9 Plot of three separated speech signals 

 

Experimental results 
In our simulations, we generate two mixture signals by mixing three audio sources. The sources include a signal containing “bat”, 

“boot”, “but” speech respectively. 

Previously, we assumed the unknown mixing matrix by considering matrix such as, 

 

 

 

Where the cluster points of each column matrix is [0.9 2 0.5]. But after applying K-SVD and K-means algorithm, we 

 

 

got the mixing matrix using three cluster values and also find that the both matrix’s cluster points are close to each other. Now the 

known mixing matrix is 

Where the cluster points of each column matrix is [0.91 2 0.57]. The scatter plot of three clusters is shown in following fig 10. 

0.9 0.6 0.2

0.1 0.3 0.4
A

 
  
 

0.66 0.88 0.49

0.72 0.44 0.86
A

 
  
 



[Mahajan et al., 2(4): April, 2015]                                                                                                     ISSN: 2349- 5197 
  

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT 

 

http: //  www.ijrsm.com         (C) International Journal of Research Science & Management 

 [30] 
 

 
Fig. 10 Scatter plot of three cluster points of estimated mixing matrix 

 

With the help of this known mixing matrix we can go further for separation process. Both the methods are able to get the signals 

back from mixed signal. By comparing both algorithm, GPSR is better than L1-Magic at ‘tau’ value 0.015. 

 

Conclusion 
In this paper, we proposed a CS approach to undetermined BSS which contains two stages. Experiment showed that after applying 
K-SVD and K-means algorithm we get the known mixing matrix which is used to recover the original source signals from 
mixtures. Furthermore, GPSR performs better than L1-Magic. 
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