
[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [19]

A LIGHTWEIGHT OPERATING SYSTEM FOR DYNAMIC WIRELESS APPLICATION

DEVELOPMENT KIT TO INCREASE USABLE MEMORY
Rajesha N1*, HL Viswanath2
1*Research Scholar, Department of ECE, Shri JJTU, Jhunjhunu-01
2Prof. and Head, Dept. of ECE, RRIT, Bangalore-90

Correspondence Author: rajeshmurthy44@gmail.com

Keywords: Flash File System, Wear Levelling, Scheduling, Remote reprogramming

Abstract

A replaceable scheduler is provided to support different scheduling policies that meet the requirements of different WSN

applications. The efficiency of the scheduler is improved by fast algorithms instead of linear search for the next running thread;

the overhead of context switch can also be reduced by storing the critical registers on the internal stack and avoiding using the

slow external memory. The proposed approach for overcoming resource constraints is compiler-assisted run-time support for

features such as virtual memory, remote reprogramming and memory allocation. Virtual memory can be achieved without

hardware support via code insertion at compile time. Position-independent code (PIC) is a suitable approach to achieving dynamic

loading; the compiler can assist with the generation of PIC on the host PC, thus avoiding the overhead of relocating addresses at

run-time. With the host PC’s help, the run-time overhead on the wireless sensor nodes can be reduced significantly. Flash File

System has been developed to achieve efficient file operation and low power consumption. To minimize the active time of the

MMC card by I/O scheduling and by limiting the access via the API is provided by Flash File System. To reduce code size, it is

proposed to let the controller can handle wear levelling and erase-before-write.

Introduction
Real Time Operating System (RTOS) is a limited constrained platform for wireless sensor networks (WSN). RTOS constitutes a

cooperative threading model, which is applicable to WSN applications. Virtual memory is supported with the assistance of the

compiler, so that the sensor platforms can execute code larger than the physical code memory they have. To enable firmware

update for deployed sensor nodes, RTOS supports remote reprogramming. The commonly used library and the main logical

structure are separated; each sensor device has a copy of the dynamic loading library in the Micro-SD (Secure Digital) card, and

therefore only the main function and user-defined subroutine scan is updated through RF. A lightweight, efficient Flash file

system is also included in RTOS. The designed RTOS can run on many RF-enabled systems that cannot run most other WSN

OSs.

Sensor Network nodes are least expensive, low power embedded systems. Random access memory (RAM) is t ightly-constrained

in many embedded systems. The sensor network nodes have only 1-10KB of RAM and do not contain memory management units

(MMUs). It is very difficult to implement complex applications under such limited memory constraints. It is proposed to use of

compile-time and run-time techniques to increase the amount of usable memory in MMU-less embedded systems and to increase

the size of the flash memory. The proposed techniques do not increase hardware cost, and are designed to require small changes to

existing applications. A fast compression algorithm has been developed, that is well suited to this application, as well as runtime

library routines and compiler transformations to control and optimize the automatic migration of application data between

compressed and uncompressed memory regions. These techniques were experimentally evaluated on sensor network nodes

running a number of data collection and signal processing applications. The results indicate that available memory can be

increased by up to 26-30%.

Embedded systems are primary constraints in applications of wireless sensor networks. In these systems, processing and flash

memory are limited due to constraints on cost, size, and power consumption. For example, eight-bit microcontrollers generally

have no memory management units (MMUs). Sensor network nodes are the embedded systems whose resource and power are

limited, and hence constrained [2]. Even though the proposed techniques may be used in any memory constrained embedded

system without an MMU, this article will focus on using them to increase flash memory in sensor network nodes with limited

changes to hardware and with no or minimal changes to applications. With advances in technology, sensor networks composed of

small and cost effective sensing devices equipped with wireless radio transceiver for environment monitoring are deployed. The

key advantage of using these small devices to monitor the environment is that it does not require infrastructure such as electric

mains for power supply, wired lines for Internet connections to collect data, no need for human interaction while deploying. These

sensor nodes can monitor the environment by collecting information from their surroundings and work cooperatively to send the

data to a base station, or sink, for analysis. Many ideas utilized for improving the communication, security, and in-network

processing capabilities of sensor networks rely on sophisticated routing encryption, query processing and signal processing

algorithms are implemented on sensor network nodes. However, sensor network nodes have limited memory constraints.

Unfortunately, it is not economical to fabricate the deep trench capacitors used for high-density RAM with the same process as

rajeshmurthy44@gmail.com

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [20]

processor logic. As a result, SRAM is used in sensor network nodes. Unlike DRAM, SRAM generally requires six transistors per

bit and it has more power consumption. Some researchers have proposed addressing memory constraints using hardware

techniques such as compression units inserted between memory and processor. However, such hardware implementations

typically have difficulty adapting to the characteristics of different application data.

Software techniques that use data compression to increase usable memory have some advantages over hardware techniques. They

do not require processor or printed circuit board for design and they allow the selection and/or modification of compression

algorithms, permitting good performance and compression ratio for the specific applications. However, software techniques that

require the design of applications are to be used by embedded systems programming experts. Most sensor network application

experts are not embedded system programming experts. If memory expansion technologies are to be widely deployed, they

couldn’t require changes to hardware and could require minimum or no changes to applications. In this article, it is proposed to

use a memory expansion technique, named MEMMU, for use in wireless sensor networks. This technique uses compile time

transformation and run-time library support to automatically manage on-line migration of data between compressed and

uncompressed memory regions in sensor network nodes. It provides application developers with access to more usable RAM and

requires minor changes to application code and limited changes to hardware. The proposed technique requires no MMU and has

enabling its use in sensor network nodes with extremely limited memory and performance constraints. It has been optimized to

minimize impact on performance and power consumption; experimental results indicate that in many applications, such as data

sampling and audio signal correlation computation, its operating cost is small [4].

The rest of this paper is organized as follows. Section 2 discusses Architecture of Flash File System. Section 3 presents Data

Types in Flash File System concepts. Section 4 describes the Design Overview of Remote System Call. Section 5 describes the

Summary. Section 6 presents the Experimental Setup. Finally, Section 7 concludes this paper.

The flash-file system
A dynamic and efficient storage system is a basic constraintto build ultra-compact sensor nodes for asynchronous transmission.

Nonvolatile storage system is act as a significant role for recording node status and timestamps of events, especially since power

depletion may occur unpredictably on a deployed sensor node. However, it is possible to write codes for drivers to directly control

the nonvolatile storage. Amore structured glide path is to build a simple file system generalization on top of the raw storage

device. It is proposed to use a file system named Flash File as a component in RTOS for Underwater Environment [11].

Flash file architecture overview

Figure 1: Flash File System Architecture

Figure 1 illustrates the architecture of the FLASH FILE system. At the top is the “Resource Abstraction” maintained in run-time

memory. It consists of the in-memory representations of open files, cleaning policy, and other FLASH FILE configuration data.

The “General File Operations” is the logical abstraction of all file/directory operations. The “FLASH FILE Maintenance Tasks” is

the abstraction of system maintenance tasks, e.g. maintaining a snapshot of directory structure and file metadata in EEPROM. It

also includes the garbage collection task. When predetermined conditions are met, the garbage collection task will be posted,

though these functions can also be explicitly called by the users. The cleaning policy is selected at compile time.

However, the command graph can be used to analyze sensed data and plot charts. To demonstrate the convenient shell

environment of Flash File host side implementation, figure 6 shows the snap shots of Flash File Shell. The users can easily

Resource Abstraction

Flash maintenance

task

General file

Operation

Flash EEPROM RAM

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [21]

manipulate the Flash files by plugging the MMC card into a card reader via the assistance of Flash File Shell on the host PC. The

collected data by the sensors can be analyzed easily as shown in figure 6. In addition, all Flash File System-formatted data,

including binary code segments, can be accessed via Flash File Shell [12].

Storage Medium in WSN

In recent years, flash memory has been widely used in embeddedsystems and handhelddevices. The features of flash memory

include non-volatility, smaller size, low power consumption, and shock resistance. In fact, flash memory can be established on

many wireless sensor platforms either on-board or as an expansion module. Experimental result shows that platform can have an

external MMC card module connected via SPI. A MMC card is functionally identical to a regular SD (Secure Digital) card. Figure

2 shows the User program for the developed module.

An MMC card contains a controller that handles wear leveling, auto-erasing, and error correcting codes (ECC)

recovering.MMC/MMC cards can be controlled through a serial peripheral interface (SPI). Although MMC cards consume more

energy than flash components because of their simple interface, small physical size, and high capacity characteristics make them

suitable for wireless embedded devices

Figure 2: User program

public Packet Transmit() { if ((sSender.iResidualEnergy <= 0) || ((sReceiver != null) &&

(sReceiver.iResidualEnergy <= 0)))

{ if (sSender.iResidualEnergy <= 0)

{ if (sSender.Pherovalue > 0)

sSender.Pherovalue -= 0.1m;

}

else if (sReceiver.iResidualEnergy <= 0)

{ if (sReceiver.Pherovalue > 0)

sReceiver.Pherovalue -= 0.1m;

}

iTransmitting = 0;

} else if (iTransmitting > 0)

{ iTransmitting--;

if (iTransmitting == 0)

{ if (sReceiver != null)

{ if (sReceiver.Pherovalue < 100)

sReceiver.Pherovalue += .1m;

} if(sSender.Pherovalue<100)

sSender.Pherovalue += .1m;

if (sReceiver != null)

sReceiver.aPackets.Add(packet);

else

{ Packet returnPacket = packet;

packet = null;

return returnPacket;

} }}

return null;

}}

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [22]

Host side vs. host side flash file

The implementation of Flash File consists of two main parts: node side and host side. The part on the host side is controlledusing

the Flash File Shell. Due to the resource limitations, the node side focuses on how to efficiently accessFlash File data. On the

other hand, the host side provides completefunctionalities of Flash File, including list, read, write, modify, and binary to HEX

translation. There is no severerestriction on the host PC.

Node side

For the wireless sensor node implementation shown in Fig. 7, an MMC/MMC driver is built according to the Secure Digital Card

specification that uses SPI protocol to accessthe memory card for basic I/O operations. A Flash File libraryis too provided in order

to distinguish specialized data types, namely code data, preferences, sensed data, andnetwork data. The Flash File Library is

configurable: only demandedones are configured and installed on the wirelesssensor nodes. Some reference applications

commonly usedin WSN such as logging sensed data, booting from an MMCcard, periodically refreshing the node status, and

accessingthe routing table in multi-hop wireless networks by using Flash File System.

Host side

After the data has been stored in the MMC Card, it is relativelyeasy to access the MMC card via a USB card reader on ahost PC as

shown in Fig. 7. To extract Flash File-formatteddata, a Flash Fileprogram is required. The data read fromthe card are processed by

the program that converts it intothe appropriate file format to be accessed by the user.The top layer of Flash File host-side

implementation isFlash File Shell. The interactive shell environment providesgeneral Unix-like commands such as ls, cd, cp, and

cat sothat users can list all files for each type and see the content in eachfiles. There are also special commands, for example, mkfs

to format an MMC card, clean to eliminate all files, and installto modify and add files to Flash File System.

Data types in flash file system
Each data item in Flash File System is eitherfixed length or wrapped by special tags as used in a regularTCP/IP packet format and

has a particular length field tosuggest the size of the item. Therefore, the analyzing processcan be done without consuming large

data memory by usingload-partial-then-analyze scheme. In the following subsections, we describe the detailed format of Flash

File data types [18].

Code data

The intention of code data is to affirm virtual memory for code in RTOS. By using the Flash File Shell, the dynamic loading

library ELIB can be pre-installed on the MMC card. Each code segment has a unique virtual address, which is the location of the

code segment onthe MMC card. The segment format starts from a special BEG (0xAE) tag followed by a two-byte field indicating

the binary segment size; after the size field, the binary databytes with a pre-defined size will follow. When a node wants toretrieve

the segment by its virtual address from the MMC card, it first checks for the BEG tag; then it reads two bytesto get the data size

and allocate suitable code memory space; finally, the code segment is loaded from the MMC card into the code memory. The

current design of the code datablock does not allow modification of the code segment bythe sensor node itself, though a later

version of Flash File willenable replacement of binary segments at run-time.

Preferences

To provide a fast query data structure of Flash File, it is possible to add the preference data type. Each preference item is

represented by 22 bytes, including 1 byte BEG(0xEA) tag, 1byte TYPE tag that indicates the data type of the value field such as

character, integer, or string, along with 10-bytekey string and the 10-byte value with a type tag. To prevent high data memory

consumption and to support modification of data, each preference item is distributed into a 512-byte MMC card sector. The

characteristic of preference is to support fast searching and additional modifying ability. As a result, a hashing scheme is applied.

When the specific value of a key is required, first the key is passed to a simple hash function to generate an integer. Second, the

integer is added to an offset to get the sector number, the location of preference item. Finally, the value is retrieved. For the keys

with same hash value, it is possible to allocate five slots to store the collision preferences; the next linked preference is located

next to the current located sector. There is also a super block for data of preference type, which is the bitmap used to check

whether the target hash value exists or not. Thus, the string-comparison time is reduced for non-existent preference keys.

Sensed data

The sensed data is supplemented only when changing the “already sensed data” is unnecessary and the modification of flash

memory results in high overhead. Some of the WSN sensing tasks collect sensed data when specific events have happened. For

this reason, begin and end tags are added to enclose sensed data to keep events separated. There is also a timestamp field in sensed

data format, so that for the later analysis can be calculate the event-trigger time using the data retrieved from this specific field. To

fill the timestamp field, either the system timer or user application granted time can be used. Besides, if the MMC card is full, then

the decision to overwrite or stop depends on the preference setting.

Network data

Flash File network data are used to store network-related information such as packet routes, neighbor sensor node states, and the

WSN topology. The fields can be customized by user applications. Each network data item is represented by fixed 32-byte data,

including 2 bytes of network ID and 30bytes of a user-defined structure such as the type, state, and remaining power of sensor

node, depending on the requirements of the WSN applications. A bitmap is maintained in the super block for the purpose of

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [23]

quickly enumerating existing items in the Flash File network data area. The current version of Flash File supports around 50,000

IDs, which consumes 8192 bytes. Even though a sensor node reads 8192 bytes of result in about 12 ms, this mechanism consumes

only 32 bytes of data memory, which is more beneficial especially for constrained wireless sensor platforms.

Implementation of remote system call
Figure 3 shows the structure and the behavior of the DRTOS for a remote system call. A remote system call is issued using an

OSEK OS API specifying the global task ID of the target task. When an application task issues a system call, the task location

search module determines the node on which the target task resides referring to the task location data. If the target task is a local

task, the original system call of OSEK OS is executed. If the target task is a remote task, the remote system call module executes

the processing for the remote system call as follows.
The request transmission submodule generates a request message, which consists of the global task ID of the caller task, the global

task ID of the target task, the system call identifier and the input parameters. Then the submodule calls the Zigbee driver to write

the request message in the message RAM of the Zigbee controller. The communication of request messages of system calls is

executed by Zigbee controllers. Received request messages are stored in the message RAM of the Zigbee controller of the callee

node. The cycle start processing is executed by an ISR (Interrupt Service Routine), which is activated at the beginning of each

Zigbee communication cycle.

The ISR belongs to the category 2 of OSEK OS. The cycle start processing executes global time maintenance at first, and then

executes the request processing submodule. The submodule calls the Zigbee driver to read messages received in the previous

communication cycle, interprets the request message, and calls the original system calls of OSEK OS. The ISR executes the return

value transmission submodule after the system call execution. The submodule generates a return message, which consists of the

global task ID of the caller task, the return value and output parameters, and then calls the Zigbee driver to write the return

message in the message RAM.

The ISR of the caller node executes the return processing submodule after the cycle start processing. The submodule calls the

Zigbee driver to read messages and stores the return value and output parameters in a buffer. Then the submodule releases the

caller task from the waiting state. The caller task gets the return value and output parameters from the buffer and resumes the

application program [16].

Figure 3: Structure and Behavior of DRTOS (Distributed Real Time Operating System) for Remote System Call.

Summary
Figure 4 illustrates the procedure for automatically generating an executable file from mid/high-level language source code such

as C# with .NET platform.

Performance requirements

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [24]

1. Increased admin security: The PC should be highly secured and accessible only by the administrator to avoid the misuse of

the application.

2. Portability: The GUIs of this application is user-friendly so it is very easy for the user to understand and respond to the same.

3. Reliability: This system has high probability to deliver us the required queries and the functionalities available in the

application.

4. Response time: The time taken by the system to complete a task given by the user is found to be very less.

5. Scalability: The system can be extended to integrate the modifications done in the present application to improve the quality

of the product. This is meant for the future works that is to be done on the application.

 Figure 4: procedure for automatically generating an executable file from mid/high-level language source code

Evalution & results
This section shows the efficiency of the proposed module as a lightweightdynamic multithreaded OS for sensor network platform.

Issue:

While application debugging some time Visual Studio2008 have some sort of configuration problem. Deploy started: Project:

Hello1, Configuration: Debug Intel_SDK. The configuration data for this product is corrupt. Contact your support personnel.

Deploy: 0 succeeded, 1 failed, 0 skipped Solution:

This problem occurs, when Visual Studio 2008 Beta and all the beta files were not removed prior to installing the MSDN library

version of VS 2008. The solution to this problem is as follows:

1. Shutdown Visual Studio 2008

2. Delete all the files in C:\Documents and Settings\<user name>\local settings\application data\Microsoft\CoreCon\1.0". (May

want to create a backup just in case)

3. Restart Visual Studio 2008

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [25]

If that does not solve the problem, you may need to completely uninstall Visual Studio 2008 and clean up the stuffs left by

pre-RTM version probably with the help of the following tool: Visual Studio 2008 previous beta removal tool.

Figure 5: Utility tool for uploading and RF debugging

Initially, describing the experimental setup, including the hardware platform and software tools. Second, comparisonof the context

switch overhead and the code anddata memory footprints of different multi-threaded schedulerimplementations have been

demonstrated. It is also compare the powerconsumption of loading code segments over RF andMMC cards and evaluating the

code updating scheme againstother methods to shown that, it is possible to reduce runtime overhead significantlyin terms of the

size of the uploaded code [17].

Experimental Setup
This section describes the hardware platform and softwaretools for the proposed module.

Software tools

The software for the proposed module includes an IDE and graphical user interface tools (GUI) on the host computer, system

software on the sensor node and the base station, and utility tools for uploading and RF debugging. This is as shown in figure 5. It

is possible to build an IDE with Eclipse by creating a plugin for module development. With this plugin, a fully GUI-based

programming environment has been provided. This lowers the burden for users to memorize commands and enables them to focus

on the software development process, from editing, compiling, and linking to firmware updating.

Context switch overhead of different schedulers

To evaluate the context-switch overhead of cooperative threads in this proposed module, implementation of both round-robin

(RR)and priority-based schedulers has been developed, along with different algorithms have been proposed, that may affect the

context-switching time. It is going to measure the execution time by taking the average of 50,000 context switches. It is clear to

observe that fast algorithms significantly improve both RR and priority-based schedulers by cutting the execution times down to a

quarter of the original linear search implementation. Preemptive multi-threading has the highest context-switch overhead due to

the unpredictable preemption time, and therefore all of the registers must be saved and restored during context switch. C-

coroutines using C-switch statements have been implemented and adding the priority based and RR schedulers to it. C-coroutines

and cooperative threads have the feature that context switching occurs only when the running thread calls yield or sleep functions,

and thus they have lower context-switch overhead. The implementation of C-coroutines uses C-switch statements, this means that

every context switch results in several comparisons of variables and an absolute jump. Consequently, a context switch of

cooperative threads is simply a replacement of the program counter, stack pointer, and some global variables, and thus it has the

lowest overhead.

To compare Proposed Module with a real-world OS, we ported μC/OSII to Proposed Module. It is widely used in industry,

whereas no other WSN OSs are known to run on the 8051. Table 1 compares the context-switch overhead of μC/OS-II and our

work. The reason why μC/OS-II has high context-switch overhead is that it uses external memory to store both the per-thread

stack and registers, thus incurring great overhead from many external memory movements. Table 2 shows a comparison of the

code and data memory usage between different scheduler implementations. The preemptive ones consume the most memory for

the same reason mentioned before. Other scheduler implementations require about 1KB of code memory, which is frugal

compared to other regular RTOSs such as μC/OS-II and FreeRTOS.

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [26]

Table 1. Context switch overhead comparison between the proposed module and µC/OS-II for 50,000 context switches

 Proposed

Module

µC/OS-II

Overhead(µs) 23.3 159

Table 2. Code and Data Size Comparison. Unit: bytes

 Proposed

Module

FreeRTOS µc/OS II

Code Size 8234 7560 10294

Data Size 646 719 488

Sensor platform

Experimental platform is as shown in Fig. 7. The module refers to the larger version for prototype and application development,

and a compact version called the “simple node” is more suitable for field deployment. This platform consists of an MCU with a

Zigbee Module, power circuitry, and an expansion interface.

Figure 6.Flash File host PC shell environment with built-in data analysis and data viewers

Figure 7: The proposed module.

The MCU (P89V51RD2) core runs at 16 MHz by default and comes with 16KB program flash and 1KB data RAM. A 32-Mbit

on-board flash memory and MMC expansion capability are included for nonvolatile data storage. Most WSN OS cannot fit

intothis limited platform and are thus not easily comparable. To measure the energy consumption in this module, it is possible to

develop a power measurement module as shown in figure 7.

Conclusion
RTOS leads maximum contributions in the WSN OS area. The cooperative threads programming model enhances the

performance by decreasing context-switching, which makes it two times faster than the preemptive multithreaded programming

model. This cooperative threading model is easy to learn compared to the event-driven model. RTOS provides code virtual

memory is overcome to reduce the on-chip code memory. To achieve virtual memory, the Flash File system is built on the host PC

composed of PIC segments and is loaded to code memory on-demand by the run-time loader of RTOS. Remote reprogramming is

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [27]

also available in RTOS. Due to the pre-stored Flash File on the Micro-SD card, the size of the data of the user program is to be

wirelessly updated and it is reduced significantly during the remote reprogramming stage.

It is going to be described that the MEMMU, is an efficient software-based technique to increase Flash memory in MMU-less

embedded systems. A number of compile-time and run-time optimizations are used to increase the performance and power

consumption of the sensor nodes. An efficient delta-based Deflate compression algorithm was designed for sensor data

compression. MEMMU was evaluated using a number of representative wireless sensor network applications. Experimental

results show that the optimization technique effectively improves MCU’s performance.

Finally, Besides, a shell for the host PC is also provided to control Flash File-formatted SD cards, including listing, reading,

writing, and modification, thus reducing the difficulty and complexity to access Flash File data. Only ten percent of code is

machine-dependent, while the rest is written in C language, and thus it is easy to port to other wireless sensor platforms. The fact

that it runs on a modest sized P89V51RD2 MCU, means that RTOS is expected to be easily portable to many other integrated RF-

MCUs, most of which contain an 8051-compatible core. Thus, RTOS is opening up a whole class of cost-effective, compelling

RF-MCUs previously unsupported by WSN OSs.

REFERENCES

1. D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs. Monograph in preparation, 2006.

2. I. Aydin and C. Shen. Facilitating Match-Making Service in Ad hoc and Sensor Networks Using Pseudo Quorum. In ICCCN,

Oct. 2002.

3. O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro, F. Ducatelle, L. M. Gambardella, N. Ganguly, M. Jelasity, R.

Montemanni, A. Montresor, and T. Urnes. Design patterns from biology for distributed computing. ACM Trans. Auton.

Adapt. Syst., 1(1):26–66, 2006.

4. L. Badia, M. Mastrogiovanni, C. Petrioli, S. Stefanakos, and M. Zorzi. An Optimization Framework for Joint Sensor

Deployment, Link Scheduling and Routing in Underwater Sensor Networks. In WUWNet’06, Los Angeles, CA, Sep. 2006.

5. S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward. A Distance Routing Effect Algorithm for Mobility (DREAM).

In MOBICOM’ 98, Dallas, TX, 1998.

6. G. D. Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control for Communications Networks. Artificial Life,

5(2):137–172, 1999.

7. G. D. Caro, F. Ducatelle, and L. M. Gambardella. AntHocNet: An Adaptive Nature-Inspired Algorithm for Routing in Mobile

Ad Hoc Networks. Telecommunications (ETT), Special Issue on Self Organization in Mobile Networking, 16(2):137–172,

2005.

8. A. Caruso, F. Paparella, L. F. M. Vieira, M. Erol, and M. Gerla. The Meandering Current Model and its Application to

Underwater Sensor Networks. In INFOCOM’08, Phoenix, AZ, Apr. 2008.

9. S. M. Das, H. Pucha, and Y. C. Hu. On the Scalability of Rendezvousbased Location Services for Geographic Wireless Ad

Hoc Routing. Elsevier Computer Networks, 51(13):3693–3714, 2007.

10. F. Dressler. Benefits of Bio-inspired Technologies for Networked Embedded Systems: An Overview. In Dagstuhl Seminar

06031 on Organic Computing - Controlled Emergence, Dagstuhl, Germany, Jan.

11. BAI, L. S., YANG, L., AND DICK, R. P. Automated compile-time and run-time techniques to increase usable memory in

MMU-less embedded systems. In CASES ’06: Proceedings of the 2006 international conference on Compilers, architecture

and synthesis for embedded systems (New York, NY, USA, 2006), ACM, pp. 125–135.

12. BAI, L. S., YANG, L., AND DICK, R. P. MEMMU: Memory expansion for MMU-less embedded systems. ACM Trans.

Embed. Comput. Syst. 8, 3 (2009), 1–33.

13. BHATTI, S., CARLSON, J., DAI, H., DENG, J., ROSE, J., SHETH, A., SHUCKER, B., GRUENWALD, C., TORGERSON,

A., AND HAN, R. Mantis os: an embedded multithreaded operating system for wireless micro sensor platforms. Mob. Netw.

Appl. 10, 4 (2005), 563–579.

14. CAO, Q., ABDELZAHER, T., STANKOVIC, J., AND HE, T. The LiteOS operating system: Towards Unix-Like

abstractions for wireless sensor networks. In IPSN ’08 (Washington, DC, USA, 2008), IEEE Computer Society, pp. 233–244.

15. CHA, H., CHOI, S., JUNG, I., KIM, H., SHIN, H., YOO, J., AND YOON, C. RETOS: resilient, expandable, and threaded

operating system for wireless sensor networks. In IPSN ’07 (New York, NY, USA, 2007), ACM, pp. 148–157.

16. CHEN, C., CHEN, Y., TU, Y., YANG, S., AND CHOU, P. EcoSpire: an application development kit for an Ultra-Compact

wireless sensing system. Embedded Systems Letters, IEEE 1, 3 (2009), 65–68.

17. CHOUDHURI, S., AND GIVARGIS, T. Software virtual memory management for MMU-less embedded systems. Tech.

rep., Center for Embedded Computer Systems, University of California, Irvine, Nov 2005.

18. DAI, H., NEUFELD, M., AND HAN, R. ELF: an efficient log structured flash file system for micro sensor nodes. In SenSys

’04 (New York, NY, USA, 2004), ACM, pp. 176–187.

19. DUFFY, C., ROEDIG, U., HERBERT, J., AND SREENAN, C. J. Adding preemption to TinyOS. In EmNets ’07:

Proceedings of the 4th workshop on Embedded networked sensors (New York, NY, USA,

[Murthy et al., 2(5): May, 2015] ISSN: 2349- 5197

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [28]

2007), ACM, pp. 88–92DUNKELS, A., FINNE, N., ERIKSSON, J., AND VOIGT, T. Runtime dynamic linking for

reprogramming wireless sensor networks. In SenSys ’06 (New York, NY, USA, 2006), ACM, pp. 15–28.

20. DUNKELS, A., GRONVALL, B., AND VOIGT, T. Contiki – a lightweight and flexible operating system for tiny networked

sensors. In LCN ’04: Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks

(Washington, DC, USA, 2004), IEEE Computer Society, pp. 455–462.

21. DUNKELS, A., SCHMIDT, O., VOIGT, T., AND ALI, M. Protothreads: simplifying event-driven programming of memory

constrained embedded systems. In SenSys ’06 (New York, NY, USA, 2006), ACM, pp. 29–42.

22. EMITT SOLUTIONS. Microcontroller market and technology analysis report – 2008, 2008.

23. GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. The nesC language: A holistic

approach to networked embedded systems. SIGPLAN Not. 38, 5 (2003), 1–11.

24. GU, L., AND STANKOVIC, J. A. t-kernel: providing reliable os support to wireless sensor networks. In SenSys ’06 (New

York, NY, USA, 2006), ACM, pp. 1–14.

