
[Kumar et al., 2(6): June, 2015]                                                                                                      ISSN: 2349- 5197 
                                                                                                                                             Impact Factor (PIF): 2.138     
 

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT 

 

http: //  www.ijrsm.com         (C) International Journal of Research Science & Management 

 [79] 
 

FPGA DESIGN AND SIMULATION OF MODIFIED MODULAR INVERSE FOR ELLIPTIC 

CURVE CRYPTOGRAPHY 
Mahesh Kumar A S*1, Jithendra P R Nayak2, Naveen Kumar M S3 
1* M Tech Scholar, Department of Electronics and Communication, VTU-RC, PG Studies, Mysuru-570029, INDIA 
2, 3 Assistant professor, Department of Electronics and Communication, GMIT, Mandya-571422, INDIA 

Correspondence Author: as.mahesh.ec@gmail.com 

 

Keywords: Field programmable gate arrays (FPGA), Elliptic curve cryptography (ECC), Binary Inversion Algorithm (BIA), and 

GF (p) arithmetic operators. 

 

Abstract 

Elliptic Curve Cryptography is a public-key cryptography based on the algebraic structure of elliptic curves over finite fields. 

Elliptic Curve Cryptography recently gained a lot of attention in security areas. ECC contrasted with RSA is that it utilizes littler 

keys to accomplish equivalent level of security, in this manner decreasing handling overhead. With Elliptic Curve Cryptography 

abnormal state of security can be accomplish with minimal effort, little key size and littler equipment acknowledgment. The 

fundamental operation of ECC is point multiplication. This point multiplication  includes operations like point addition and point 

doubling. These operation in turn include addition, subtraction, multiplication, inversion and squaring over a prime number. Out 

of these operation inversion is the most expensive modular operation with data dependent delays in ECC processor. A review on 

various algorithms to perform modular inverse on prime fields more effectively has been carried out. There are several inversion 

algorithms like Euclidean Algorithm, Extended Euclidean Algorithm, Montgomery algorithm, Binary Inversion Algorithm and 

Little Fermat thermo. Out of this Binary Inversion Algorithm division operation performed by cheap shift and adds operation. 

This work replace both adder and shifter unit by rotate unit. With that replacement can achieve 25% reduction in hardware results 

in improved performance, speed, area and also reduce power consumption This makes BIA even more well suitable for 

implementation in any hardware platform. Hence the main objective of the paper is to design the modified Binary Inversion 

Algorithm in FPGA for NIST recommended prime field p521. 

 

Introduction 
Cryptography is a method of storing and transmitting    information in a particular form so that only those for whom it is intended 

can read and process it. 

The data security has become an crucial and urgent need for modern applications such as health care information, confidential 

communication, hand held device storage and financial services. The public key cryptosystem is the most effective for the secure 

data transmission. The challenge to implement the most popular public key cryptosystem, RSA is the rapidly . growing key size. 

Elliptic Curve cryptography has been considered an alternative to RSA. 

The main advantage of cryptography is security. It is estimated that security level of 160 and 224 bits ECC cryptosystem is 

equivalent to the 1024 and 2048 bits RSA respectively.The application of Elliptic curves in public-key cryptography was proposed 

by Koblitz[1] and Miller[2] in 1985. Since then, enormous amount of work has been done on elliptic curve 

cryptography(ECC).The attractiveness of using elliptic curves is that similar level of security can be achieved with considerably 

shorter keys than in methods based on the difficulties of solving discrete logarithms over integers or integer factorizations. 

Therefore ECC has become final choice in smart cards, credit cards and mobile phones due to its strength to provide equivalent 

security compared to RSA. The fundamental operation ECC of is point multiplication. This point multiplication involves the 

computation of point addition and point doubling. Each of these operations requires arithmetic operation like addition, subtraction, 

multiplication, squaring and inversion. Inversion operation is well known to be the slowest operation among all other modular 

arithmetic operations in ECC [1]. If this inversion operation consumes too much time, it will affect the performance of the whole 

ECC system. To have a fast modular inverse calculation is one of the main reasons to do inversion in hardware instead of software 

[7-9]. The other main reason to implement the modular inverse operation in hardware is security [1]. For cryptographic 

applications, it is better to have all the computations handled in hardware, inside an integrated chip for example, instead of mixing 

some computations performed in software with others processed in hardware. Software implementations are supported by 

operating systems in which the underlying processor is not optimized for the instruction set of ECC, which can be interrupted and 

trespassed by intruders and this way system may compromise the application security. This is not so easily attained in hardware 

implementations [1].In 2000, J.Goodman and A. Chandrakasan, “An energy efficient reconfigurable public-key cryptography 

processor architecture in Cryptographic Hardware and Embedded Systems (CHES)”, it gives an idea to achieve parallelization in 

point multiplication. In 2008 Kendall Anayi and Hamad proposed “ On Parallelization High-Speed Processors for Elliptic Curve 

Cryptography”, designing  a flexible ECC processor for performing additions, subtractions, multiplications and inversions over 
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prime finite fields GF(p).In 2012, Anil Kumar M .N “ A Technique to Speed up the Modular Multiplicative Inversion over GF(P) 

Applicable to Elliptic Curve Cryptography”, propose a module  to speed up modular inversion calculation. The main contributions 

of this work include the following a modified architecture to speed up the computation of modular multiplicative inversion which 

uses Binary Inversion Algorithm. This technique can be used specifically to NIST recommended elliptic curve with modulus 

p521-1. The outline of this paper is as follows. In section 2, the back ground of Elliptic Curve Cryptography (ECC) is discussed. 

In section 3, how to speed up the modular inverse for Binary Inversion Algorithm is discussed, section 4 deals with the results and 

finally section 5 concludes the work. 

 

Elliptic curve theory 
Elliptic curves are described by cubic equations, similar to those used in ellipsis calculations. The general form for an elliptic 

curve equation is: 

y2+axy+by=x3+cx2+dx+e. 

There is also a single element named the point at infinity or the zero point denoted “ϕ”. The point at infinity is computed as the 

sum of any three points on an EC that lie on a straight line. If a point on the EC is added to another point on the curve or to itself, 

some special addition rules are applied depending on the finite field being used and also on the type of coordinate system (affine 

or projective) it’s applied to. 

As mentioned earlier, a finite field is a set of elements that have a finite order (number of elements). There are many ways of 

representing the elements of the finite field. Some representations may lead to more efficient implementations of the field 

arithmetic in hardware or in software. The EC arithmetic is more or less complex depending on the finite field where the EC is 

applied and in which coordinate system the computation is performed. GF (p) and GF (2n), in affine and projective coordinates 

are considered in this research because they are the most used in ECC. 

The finite field 

The finite field Fp is the prime finite field containing p elements. Although there is only one prime finite field Fp for each prime p, 

there are many different ways to represent the elements of Fp. Here the elements of F p should be represented by the set of 

integers:  {0, 1…p-1} with addition and multiplication defined as follows. 

Addition 

If a,b ϵ Fp, then a+b = r in Fp, where r [0, p-1] is the remainder when the integer a+b is divided by p. This is known as addition 

modulo p and written  a+b ≡ r (mod p). 

Multiplication 

If a, b ϵ Fp, then 𝑎 × 𝑏 =s in Fp, where s [0, p-1] is the remainder when the integer ab is divided by p. This is known as 

multiplication modulo p and written 𝑎 × 𝑏  ≡ s (mod p). 

Addition and multiplication in Fp can be calculated efficiently using standard algorithms for ordinary integer arithmetic. In this 

representation of Fp, the additive identity or zero elements is the integer 0, and the multiplicative identity is the integer 1. It is 

convenient to define subtraction and division of field elements just as it is convenient to define subtraction and division of 

integers. To do so, the additive inverse (or negative) and multiplicative inverse of a field element must be described. 

Additive inverse 

If a ϵ Fp, then the additive inverse (- a) of a in Fp is the unique solution to the equation 𝑎 + 𝑥 ≡ 0 (mod p).  

Multiplication inverse 

If a ϵ F p, a ≠ 0, then the multiplicative inverse a-1 of a in Fp is the unique solution to the equation ax ≡1 (mod p). Additive 

inverses and   multiplicative inverses in Fp can be calculated efficiently. Division and subtraction are defined in terms of additive 

and multiplicative inverses: 𝑎 − 𝑏 𝑚𝑜𝑑 𝑝 is 𝑎 + (−𝑏) mod p and a/b mod p is 𝑎. (𝑏 − 1) 𝑚𝑜𝑑 𝑝. 

Point multiplication 

Scalar multiplication Q= k·P is the fundamental operation in elliptic curve cryptography which is result of adding point P to itself 

(k-1) times  

Q = k·P = P + P + ……. + P. 

(𝑘 − 1 Times) 

 Scalar point multiplication algorithms 
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The most commonly used point multiplication algorithms are Binary scalar multiplication algorithm, NAF scalar multiplication 

algorithm and JSF scalar multiplication algorithm. 

Binary scalar multiplication algorithm 

INPUT: A point P and an integer k, binary k with no leading 0’s 

OUTPUT: Q = k·P 

1. Q←P 

2. For j = |k| − 2… 1, 0 

2.1 Q ← 2 Q 

2.2  IF k j = 1 THEN Q←Q + P 

3. RETURN Q 

 

NAF scalar multiplication algorithm 

INPUT: A point P and an integer k, NAF k with no leading 0’s 

OUTPUT: Q = k·P  

1. Q←P 

2. For j = |k| − 2… 1, 0 

2.1 Q ← 2 Q 

2.2  IF k j = 1 THEN Q←Q + P 

  IF k j = -1 THEN Q← -Q + P 

3. RETURN Q 

INPUT: A point P, JSF (𝑟, 𝑠) with no leading(0,0)’s  

OUTPUT: Q = rP + sP 

1. R←2P 

2. IF (r|(r,s)|-1 , s|(r,s)|-1) = (1,1) THEN Q ← R 

    ELSE Q ← P 

3. FOR l= |(𝑟, 𝑠)| −2, … . 1, 0 

 3.1 Q ← 2Q 

Point addition & point doubling in affine coordinates  

 

Additions in GF (p) are controlled by the following rules: 

𝑂 =  −𝑂 

𝑃(𝑥, 𝑦)  +  𝑂 =  𝑃( 𝑥, 𝑦 ) 

𝑃(𝑥, 𝑦 )  +  𝑃( 𝑥, −𝑦)  =  𝑂 

The addition of two different points on the elliptic curve is computed as shown below. 

 

𝜆 =  (𝑦2 –  𝑦1)/(𝑥2 –  𝑥1) 

 𝑋3 =  𝜆2 –  𝑥1 –  𝑥2  

𝑦3 =  𝜆(𝑥1 –  𝑥3) –  𝑦1 

The addition of a point to itself (point doubling) on the elliptic curve is computed as shown below 

𝑃(𝑥1 , 𝑦1)  +  𝑃(𝑥1 , 𝑦1)  =  𝑃(𝑥3 , 𝑦3); 

𝜆 =  (3(𝑥1)2 +  𝑎) /(2𝑦1) 

𝑥3 =  𝜆2 –  2𝑥1 

𝑦3 =  𝜆(𝑥1 –  𝑥3) –  𝑦1 

 

Speeding up modular inverse computation 
In this section, Binary Inversion Algorithm for modified   modular inversion over GF (p) to speed up the modular inverse 

computation is discussed.  
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Binary Inversion Algorithm  

The extended Euclidean algorithm uses the division operations to compute the inversion. The binary inversion algorithm replaces 

the divisions with cheaper shifts (divisions by 2) and subtractions.   

The modular multiplicative inverse a-1 mod p of an integer a exists if and only if a and p are relatively prime, that is gcd (a,p) =1. 

One of the efficient modular inversion algorithms is Binary Inversion Algorithm   shown below. 

              Algorithm: Binary Inversion in 𝐺𝐹(𝑝) 

 

Input: 𝑝 𝑎𝑛𝑑 𝑎 ∈  [0, 𝑝 −  1] 
Output: 𝑎−1 𝑚𝑜𝑑 𝑝 

 

1. 𝑢 =  𝑎;  𝑣 =  𝑝;  𝑥1 =  1;  𝑥2 =  0 

2. 𝒘𝒉𝒊𝒍𝒆 𝒖 =  𝟏 𝒂𝒏𝒅 𝒗 =  𝟏 𝒅𝒐 

2.1. 𝒘𝒉𝒊𝒍𝒆 𝒖 𝒊𝒔 𝒆𝒗𝒆𝒏 𝒅𝒐 

2.2.1. 𝑢 =  𝑢/2 

2.2.2. 𝑖𝑓 𝑥1 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑡ℎ𝑒𝑛 𝑥1 =  𝑥1/2 𝑒𝑙𝑠𝑒 𝑥1 =  (𝑥1 + 𝑝)/22.3. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

2.4. 𝒘𝒉𝒊𝒍𝒆 𝒗 𝒊𝒔 𝒆𝒗𝒆𝒏 𝒅𝒐 

2.5.1. 𝑣 =  𝑣/2 

2.5.2 𝑖𝑓 𝑥2 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑡ℎ𝑒𝑛 𝑥2 =  𝑥2/2 𝑒𝑙𝑠𝑒 𝑥2 =  (𝑥2 + 𝑝)/22.6. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

2.7. 𝑖𝑓 𝑢 ≥ 𝑣 𝑡ℎ𝑒𝑛 𝑢 =  𝑢 − 𝑣;  𝑥1 =  𝑥1 −  𝑥2 

2.8. 𝑒𝑙𝑠𝑒 𝑣 =  𝑣 − 𝑢;  𝑥2 =  𝑥2 −  𝑥1 

3. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

4.1. 𝑖𝑓 𝑢 =  1 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥1 𝑚𝑜𝑑 𝑝 

4.2. 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥2 𝑚𝑜𝑑 𝑝 

The binary modular inversion algorithm can be easily be modified to perform modular division b/a mod p by initializing x1 

variable in step 1 by b instead of 1.In the subsequent sections iteration denote subtraction. 

The diagram of the modular inverter is shown in Figure 1 Based on the Binary inversion algorithm, the modular inverter is 

composed of modular subtractor, subtractor unit, binary shifter, multiplexer, comparator, AND’s and NOR’s. 

The Start signal controls the loading operation of u, v, p, x1 and x2 registers through multiplexers either by their initial values or 

by the intermediate results at the beginning of positive edge of every clock cycle. 

 

 
Fig. 1 Architecture of Modular Inverter 

There are two comparators to compare the present values of u and v registers with 1. If any one of the comparator outputs 

becomes true then at the next clock all internal registers are freezed as the final result is available in the x1 or x2.The blocks  

Step-1u and Step-1v of the architecture perform the operations within two inner while loop of the algorithm. The operations 

designed in step 2.7 and 2.8 of the algorithm are performed by the Step-2 block of the architecture. The diagram of Step-1 and 
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Step-2 are shown in figure 2 and figure 3 respectively. The blocks Step-1u will perform the same operation as that of Step-1v for 

different inputs. Hence the blocks Step-1u and Step-1v have same hardware architecture as shown in figure 2. 

The Step-1 block consists of a 521 bit rotate, two 521 bit right shifters and three 521 bit 2:1 multiplexers. For Step-1u
 block inputs 

will be u, x1 and outputs are u_out and x1_out.  To Step-1v block v, x2 will be the inputs and v_out and x2_out were outputs. The 

output u_out depends if the input u is either even or odd value. LSB bit of u is given to select bit of multiplexer.  The output u_out 

will be u if the u is odd value, if u is even the  U_OUT= U\2. 

Divide by 2 is achieved by performing bitwise right shift operation on u. The output x1_out depends on the inputs u and x1. Here 

input x1 is rotate and then shifted right once and x1 is divided by 2. If x1 is odd output of multiplexer will be output from rotate 

unit, if it is even x/2 is the output. The output x1_out is simply x1 or output of multiplexer depending on the value of u is odd or 

even. Same operation will be performed in Step-1v with inputs being v, x2 and output were v_out and x2_out. 

 

 
Fig .2 Block diagram of Step-1 block 

The block diagram of Step-2 block is shown in figure 3. Step-2 module consists of two 521-bit magnitude subtractors, two 521-bit 

GF (P) subtractors and four 521-bit 2:1multiplexers. 

 

Fig .3 Block diagram of Step-2 block 

Two magnitude subtractors concurrently perform U-V and V-U and at the same time two GF (P) subtractors perform (X1-X2) 

mod p and(X2-X1) mod p. The borrow out signal of V-U operation, that says whether the current value of  U ≥V, used to select its 

final output. 
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Results  
Simulation results of binary inverse 

 

 
Fig .4 Simulation results of Binary Inverse module. 

Simulation results of step_1U module 

 

 
Fig .5 Simulation results of STEP_1U MODULE. 

Simulation results of step_1V module 

 

 
Fig .6 Simulation results of STEP_1V MODULE 

 

Conclusion & future work 
As more and more applications of cryptography rely on the modular inverse operation, the need of precious, fast modular inverter 

has to be designed. Implementation of the inversion algorithm in hardware results in efficiently increasing in performance and 

speed. In literature survey several modular inverse algorithms in GF (p) were analyzed to study their origins and to trace some of 

the evolutionary changes made to the basic algorithm. From study we can conclude that Extended Euclidean algorithm requires 

computationally expensive division operation, Also Montgomery modular inverse algorithm requires some extra arithmetic 

operations to represent inverse of integer in Montgomery domain to integer. Little Fermat theorem is very much suitable for 

smaller bit length.  

But in the Binary Inversion Algorithm division operation is replaced by cheaper shifts (divisions by 2) and addition. In modified 

architecture replace the shifts and addition by rotate unit also it does not require any domain conversion. This makes modified 
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Binary Inversion Algorithm more suitable for hardware implementation. The project work was completed successfully by 

designing and simulation of architecture of modular inverse on the Xilinx version 14.3.Future enhancement will target speeding 

up computation of individual computational blocks, integration of the proposed architecture with these arithmetic modules to 

perform scalar multiplication and its FPGA implementation. 
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