
[Kumar et al., 2(6): June, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [79]

FPGA DESIGN AND SIMULATION OF MODIFIED MODULAR INVERSE FOR ELLIPTIC

CURVE CRYPTOGRAPHY
Mahesh Kumar A S*1, Jithendra P R Nayak2, Naveen Kumar M S3
1* M Tech Scholar, Department of Electronics and Communication, VTU-RC, PG Studies, Mysuru-570029, INDIA
2, 3 Assistant professor, Department of Electronics and Communication, GMIT, Mandya-571422, INDIA

Correspondence Author: as.mahesh.ec@gmail.com

Keywords: Field programmable gate arrays (FPGA), Elliptic curve cryptography (ECC), Binary Inversion Algorithm (BIA), and

GF (p) arithmetic operators.

Abstract

Elliptic Curve Cryptography is a public-key cryptography based on the algebraic structure of elliptic curves over finite fields.

Elliptic Curve Cryptography recently gained a lot of attention in security areas. ECC contrasted with RSA is that it utilizes littler

keys to accomplish equivalent level of security, in this manner decreasing handling overhead. With Elliptic Curve Cryptography

abnormal state of security can be accomplish with minimal effort, little key size and littler equipment acknowledgment. The

fundamental operation of ECC is point multiplication. This point multiplication includes operations like point addition and point

doubling. These operation in turn include addition, subtraction, multiplication, inversion and squaring over a prime number. Out

of these operation inversion is the most expensive modular operation with data dependent delays in ECC processor. A review on

various algorithms to perform modular inverse on prime fields more effectively has been carried out. There are several inversion

algorithms like Euclidean Algorithm, Extended Euclidean Algorithm, Montgomery algorithm, Binary Inversion Algorithm and

Little Fermat thermo. Out of this Binary Inversion Algorithm division operation performed by cheap shift and adds operation.

This work replace both adder and shifter unit by rotate unit. With that replacement can achieve 25% reduction in hardware results

in improved performance, speed, area and also reduce power consumption This makes BIA even more well suitable for

implementation in any hardware platform. Hence the main objective of the paper is to design the modified Binary Inversion

Algorithm in FPGA for NIST recommended prime field p521.

Introduction
Cryptography is a method of storing and transmitting information in a particular form so that only those for whom it is intended

can read and process it.

The data security has become an crucial and urgent need for modern applications such as health care information, confidential

communication, hand held device storage and financial services. The public key cryptosystem is the most effective for the secure

data transmission. The challenge to implement the most popular public key cryptosystem, RSA is the rapidly . growing key size.

Elliptic Curve cryptography has been considered an alternative to RSA.

The main advantage of cryptography is security. It is estimated that security level of 160 and 224 bits ECC cryptosystem is

equivalent to the 1024 and 2048 bits RSA respectively.The application of Elliptic curves in public-key cryptography was proposed

by Koblitz[1] and Miller[2] in 1985. Since then, enormous amount of work has been done on elliptic curve

cryptography(ECC).The attractiveness of using elliptic curves is that similar level of security can be achieved with considerably

shorter keys than in methods based on the difficulties of solving discrete logarithms over integers or integer factorizations.

Therefore ECC has become final choice in smart cards, credit cards and mobile phones due to its strength to provide equivalent

security compared to RSA. The fundamental operation ECC of is point multiplication. This point multiplication involves the

computation of point addition and point doubling. Each of these operations requires arithmetic operation like addition, subtraction,

multiplication, squaring and inversion. Inversion operation is well known to be the slowest operation among all other modular

arithmetic operations in ECC [1]. If this inversion operation consumes too much time, it will affect the performance of the whole

ECC system. To have a fast modular inverse calculation is one of the main reasons to do inversion in hardware instead of software

[7-9]. The other main reason to implement the modular inverse operation in hardware is security [1]. For cryptographic

applications, it is better to have all the computations handled in hardware, inside an integrated chip for example, instead of mixing

some computations performed in software with others processed in hardware. Software implementations are supported by

operating systems in which the underlying processor is not optimized for the instruction set of ECC, which can be interrupted and

trespassed by intruders and this way system may compromise the application security. This is not so easily attained in hardware

implementations [1].In 2000, J.Goodman and A. Chandrakasan, “An energy efficient reconfigurable public-key cryptography

processor architecture in Cryptographic Hardware and Embedded Systems (CHES)”, it gives an idea to achieve parallelization in

point multiplication. In 2008 Kendall Anayi and Hamad proposed “ On Parallelization High-Speed Processors for Elliptic Curve

Cryptography”, designing a flexible ECC processor for performing additions, subtractions, multiplications and inversions over

as.mahesh.ec@gmail.com

[Kumar et al., 2(6): June, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [80]

prime finite fields GF(p).In 2012, Anil Kumar M .N “ A Technique to Speed up the Modular Multiplicative Inversion over GF(P)

Applicable to Elliptic Curve Cryptography”, propose a module to speed up modular inversion calculation. The main contributions

of this work include the following a modified architecture to speed up the computation of modular multiplicative inversion which

uses Binary Inversion Algorithm. This technique can be used specifically to NIST recommended elliptic curve with modulus

p521-1. The outline of this paper is as follows. In section 2, the back ground of Elliptic Curve Cryptography (ECC) is discussed.

In section 3, how to speed up the modular inverse for Binary Inversion Algorithm is discussed, section 4 deals with the results and

finally section 5 concludes the work.

Elliptic curve theory
Elliptic curves are described by cubic equations, similar to those used in ellipsis calculations. The general form for an elliptic

curve equation is:

y2+axy+by=x3+cx2+dx+e.

There is also a single element named the point at infinity or the zero point denoted “ϕ”. The point at infinity is computed as the

sum of any three points on an EC that lie on a straight line. If a point on the EC is added to another point on the curve or to itself,

some special addition rules are applied depending on the finite field being used and also on the type of coordinate system (affine

or projective) it’s applied to.

As mentioned earlier, a finite field is a set of elements that have a finite order (number of elements). There are many ways of

representing the elements of the finite field. Some representations may lead to more efficient implementations of the field

arithmetic in hardware or in software. The EC arithmetic is more or less complex depending on the finite field where the EC is

applied and in which coordinate system the computation is performed. GF (p) and GF (2n), in affine and projective coordinates

are considered in this research because they are the most used in ECC.

The finite field

The finite field Fp is the prime finite field containing p elements. Although there is only one prime finite field Fp for each prime p,

there are many different ways to represent the elements of Fp. Here the elements of F p should be represented by the set of

integers: {0, 1…p-1} with addition and multiplication defined as follows.

Addition

If a,b ϵ Fp, then a+b = r in Fp, where r [0, p-1] is the remainder when the integer a+b is divided by p. This is known as addition

modulo p and written a+b ≡ r (mod p).

Multiplication

If a, b ϵ Fp, then 𝑎 × 𝑏 =s in Fp, where s [0, p-1] is the remainder when the integer ab is divided by p. This is known as

multiplication modulo p and written 𝑎 × 𝑏 ≡ s (mod p).

Addition and multiplication in Fp can be calculated efficiently using standard algorithms for ordinary integer arithmetic. In this

representation of Fp, the additive identity or zero elements is the integer 0, and the multiplicative identity is the integer 1. It is

convenient to define subtraction and division of field elements just as it is convenient to define subtraction and division of

integers. To do so, the additive inverse (or negative) and multiplicative inverse of a field element must be described.

Additive inverse

If a ϵ Fp, then the additive inverse (- a) of a in Fp is the unique solution to the equation 𝑎 + 𝑥 ≡ 0 (mod p).

Multiplication inverse

If a ϵ F p, a ≠ 0, then the multiplicative inverse a-1 of a in Fp is the unique solution to the equation ax ≡1 (mod p). Additive

inverses and multiplicative inverses in Fp can be calculated efficiently. Division and subtraction are defined in terms of additive

and multiplicative inverses: 𝑎 − 𝑏 𝑚𝑜𝑑 𝑝 is 𝑎 + (−𝑏) mod p and a/b mod p is 𝑎. (𝑏 − 1) 𝑚𝑜𝑑 𝑝.

Point multiplication

Scalar multiplication Q= k·P is the fundamental operation in elliptic curve cryptography which is result of adding point P to itself

(k-1) times

Q = k·P = P + P + ……. + P.

(𝑘 − 1 Times)

 Scalar point multiplication algorithms

[Kumar et al., 2(6): June, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [81]

The most commonly used point multiplication algorithms are Binary scalar multiplication algorithm, NAF scalar multiplication

algorithm and JSF scalar multiplication algorithm.

Binary scalar multiplication algorithm

INPUT: A point P and an integer k, binary k with no leading 0’s

OUTPUT: Q = k·P

1. Q←P

2. For j = |k| − 2… 1, 0

2.1 Q ← 2 Q

2.2 IF k j = 1 THEN Q←Q + P

3. RETURN Q

NAF scalar multiplication algorithm

INPUT: A point P and an integer k, NAF k with no leading 0’s

OUTPUT: Q = k·P

1. Q←P

2. For j = |k| − 2… 1, 0

2.1 Q ← 2 Q

2.2 IF k j = 1 THEN Q←Q + P

 IF k j = -1 THEN Q← -Q + P

3. RETURN Q

INPUT: A point P, JSF (𝑟, 𝑠) with no leading(0,0)’s

OUTPUT: Q = rP + sP

1. R←2P

2. IF (r|(r,s)|-1 , s|(r,s)|-1) = (1,1) THEN Q ← R

 ELSE Q ← P

3. FOR l= |(𝑟, 𝑠)| −2, … . 1, 0

 3.1 Q ← 2Q

Point addition & point doubling in affine coordinates

Additions in GF (p) are controlled by the following rules:

𝑂 = −𝑂

𝑃(𝑥, 𝑦) + 𝑂 = 𝑃(𝑥, 𝑦)

𝑃(𝑥, 𝑦) + 𝑃(𝑥, −𝑦) = 𝑂

The addition of two different points on the elliptic curve is computed as shown below.

𝜆 = (𝑦2 – 𝑦1)/(𝑥2 – 𝑥1)

 𝑋3 = 𝜆2 – 𝑥1 – 𝑥2

𝑦3 = 𝜆(𝑥1 – 𝑥3) – 𝑦1

The addition of a point to itself (point doubling) on the elliptic curve is computed as shown below

𝑃(𝑥1 , 𝑦1) + 𝑃(𝑥1 , 𝑦1) = 𝑃(𝑥3 , 𝑦3);

𝜆 = (3(𝑥1)2 + 𝑎) /(2𝑦1)

𝑥3 = 𝜆2 – 2𝑥1

𝑦3 = 𝜆(𝑥1 – 𝑥3) – 𝑦1

Speeding up modular inverse computation
In this section, Binary Inversion Algorithm for modified modular inversion over GF (p) to speed up the modular inverse

computation is discussed.

[Kumar et al., 2(6): June, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [82]

Binary Inversion Algorithm

The extended Euclidean algorithm uses the division operations to compute the inversion. The binary inversion algorithm replaces

the divisions with cheaper shifts (divisions by 2) and subtractions.

The modular multiplicative inverse a-1 mod p of an integer a exists if and only if a and p are relatively prime, that is gcd (a,p) =1.

One of the efficient modular inversion algorithms is Binary Inversion Algorithm shown below.

 Algorithm: Binary Inversion in 𝐺𝐹(𝑝)

Input: 𝑝 𝑎𝑛𝑑 𝑎 ∈ [0, 𝑝 − 1]
Output: 𝑎−1 𝑚𝑜𝑑 𝑝

1. 𝑢 = 𝑎; 𝑣 = 𝑝; 𝑥1 = 1; 𝑥2 = 0

2. 𝒘𝒉𝒊𝒍𝒆 𝒖 = 𝟏 𝒂𝒏𝒅 𝒗 = 𝟏 𝒅𝒐

2.1. 𝒘𝒉𝒊𝒍𝒆 𝒖 𝒊𝒔 𝒆𝒗𝒆𝒏 𝒅𝒐

2.2.1. 𝑢 = 𝑢/2

2.2.2. 𝑖𝑓 𝑥1 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑡ℎ𝑒𝑛 𝑥1 = 𝑥1/2 𝑒𝑙𝑠𝑒 𝑥1 = (𝑥1 + 𝑝)/22.3. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

2.4. 𝒘𝒉𝒊𝒍𝒆 𝒗 𝒊𝒔 𝒆𝒗𝒆𝒏 𝒅𝒐

2.5.1. 𝑣 = 𝑣/2

2.5.2 𝑖𝑓 𝑥2 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑡ℎ𝑒𝑛 𝑥2 = 𝑥2/2 𝑒𝑙𝑠𝑒 𝑥2 = (𝑥2 + 𝑝)/22.6. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

2.7. 𝑖𝑓 𝑢 ≥ 𝑣 𝑡ℎ𝑒𝑛 𝑢 = 𝑢 − 𝑣; 𝑥1 = 𝑥1 − 𝑥2

2.8. 𝑒𝑙𝑠𝑒 𝑣 = 𝑣 − 𝑢; 𝑥2 = 𝑥2 − 𝑥1

3. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

4.1. 𝑖𝑓 𝑢 = 1 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥1 𝑚𝑜𝑑 𝑝

4.2. 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥2 𝑚𝑜𝑑 𝑝

The binary modular inversion algorithm can be easily be modified to perform modular division b/a mod p by initializing x1

variable in step 1 by b instead of 1.In the subsequent sections iteration denote subtraction.

The diagram of the modular inverter is shown in Figure 1 Based on the Binary inversion algorithm, the modular inverter is

composed of modular subtractor, subtractor unit, binary shifter, multiplexer, comparator, AND’s and NOR’s.

The Start signal controls the loading operation of u, v, p, x1 and x2 registers through multiplexers either by their initial values or

by the intermediate results at the beginning of positive edge of every clock cycle.

Fig. 1 Architecture of Modular Inverter

There are two comparators to compare the present values of u and v registers with 1. If any one of the comparator outputs

becomes true then at the next clock all internal registers are freezed as the final result is available in the x1 or x2.The blocks

Step-1u and Step-1v of the architecture perform the operations within two inner while loop of the algorithm. The operations

designed in step 2.7 and 2.8 of the algorithm are performed by the Step-2 block of the architecture. The diagram of Step-1 and

[Kumar et al., 2(6): June, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [83]

Step-2 are shown in figure 2 and figure 3 respectively. The blocks Step-1u will perform the same operation as that of Step-1v for

different inputs. Hence the blocks Step-1u and Step-1v have same hardware architecture as shown in figure 2.

The Step-1 block consists of a 521 bit rotate, two 521 bit right shifters and three 521 bit 2:1 multiplexers. For Step-1u
 block inputs

will be u, x1 and outputs are u_out and x1_out. To Step-1v block v, x2 will be the inputs and v_out and x2_out were outputs. The

output u_out depends if the input u is either even or odd value. LSB bit of u is given to select bit of multiplexer. The output u_out

will be u if the u is odd value, if u is even the U_OUT= U\2.

Divide by 2 is achieved by performing bitwise right shift operation on u. The output x1_out depends on the inputs u and x1. Here

input x1 is rotate and then shifted right once and x1 is divided by 2. If x1 is odd output of multiplexer will be output from rotate

unit, if it is even x/2 is the output. The output x1_out is simply x1 or output of multiplexer depending on the value of u is odd or

even. Same operation will be performed in Step-1v with inputs being v, x2 and output were v_out and x2_out.

Fig .2 Block diagram of Step-1 block

The block diagram of Step-2 block is shown in figure 3. Step-2 module consists of two 521-bit magnitude subtractors, two 521-bit

GF (P) subtractors and four 521-bit 2:1multiplexers.

Fig .3 Block diagram of Step-2 block

Two magnitude subtractors concurrently perform U-V and V-U and at the same time two GF (P) subtractors perform (X1-X2)

mod p and(X2-X1) mod p. The borrow out signal of V-U operation, that says whether the current value of U ≥V, used to select its

final output.

[Kumar et al., 2(6): June, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [84]

Results
Simulation results of binary inverse

Fig .4 Simulation results of Binary Inverse module.

Simulation results of step_1U module

Fig .5 Simulation results of STEP_1U MODULE.

Simulation results of step_1V module

Fig .6 Simulation results of STEP_1V MODULE

Conclusion & future work
As more and more applications of cryptography rely on the modular inverse operation, the need of precious, fast modular inverter

has to be designed. Implementation of the inversion algorithm in hardware results in efficiently increasing in performance and

speed. In literature survey several modular inverse algorithms in GF (p) were analyzed to study their origins and to trace some of

the evolutionary changes made to the basic algorithm. From study we can conclude that Extended Euclidean algorithm requires

computationally expensive division operation, Also Montgomery modular inverse algorithm requires some extra arithmetic

operations to represent inverse of integer in Montgomery domain to integer. Little Fermat theorem is very much suitable for

smaller bit length.

But in the Binary Inversion Algorithm division operation is replaced by cheaper shifts (divisions by 2) and addition. In modified

architecture replace the shifts and addition by rotate unit also it does not require any domain conversion. This makes modified

[Kumar et al., 2(6): June, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [85]

Binary Inversion Algorithm more suitable for hardware implementation. The project work was completed successfully by

designing and simulation of architecture of modular inverse on the Xilinx version 14.3.Future enhancement will target speeding

up computation of individual computational blocks, integration of the proposed architecture with these arithmetic modules to

perform scalar multiplication and its FPGA implementation.

References
1. Jin – Hua Hong and Cheng-Wen Wu, “ Cellular array modular multiplier for fast RSA public key cryptosystem based on

modified Booth’s algorithm”, IEEE Transactions on Very Large Scale Integration Systems, Vol.11, No.3, June 2003.

2. Ching-Chao Yang, Tian – Sheuan Chang and Chein-Wei Jen, “ A new RSA cryptosystem hardware design based on

Montgomery’s algorithm”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 45,

No.7, July 1998.

3. Andre Vandemeulebroecke, Etienne Vanzieleghem, Tony Denayer and Paul G A Jesperes, “ A new carry free division

algorithm and its application to a single chip 1024 bit RSA processor”, IEEE Journal of Solid State Circuits, Vol. 25, No.3,

June 1990.

4. Ming-Der Shieh, Jun-Hong Chen, Hao-Hsuan Wu and Wen-Ching Lin, “ A new modular exponentiation architecture for

efficient design of RSA cryptosystem”, IEEE Transactions on Very Large Scale Integration Systems, Vol.16, No.9,

September 2008.

5. Qiang Liu, Fangzhen Ma , Dong Tong and XuCheng, “ A regular Parallel RSA Processor”, The 47 th IEEE International

Midwest Symposium on Circuits and Systems.

6. C Mclvor, M.Mcloone and J V McCanny , “ Modified Montgomery modular multiplication and RSA exponentiation

techniques”, IEE Proceedings online no.20040791.

7. Kendall Anayi, Hamad Alrimeih and Daler Rakhmatov, “ Flexible hardware processor for elliptic curve cryptography over

NIST prime fields”, IEEE Transactions on Very Large Scale Integration Systems, Vol.17, No.8, June 2009.

8. Jyu-Yuan Lai and Chih-Tsun Huang, “Elixir: High-throughput cost effective dual field processors and the design framework

for elliptic curve cryptography”, IEEE Transactions on Very Large Scale Integration Systems, Vol.16, No.11, November

2008.

9. Kimmo Jarvinen and Jorma Skytta, “ On parallelization of high speed processors for elliptic curve cryptography”, IEEE

Transactions on Very Large Scale Integration Systems, Vol.16, No.9, September 2008.

10. William N Chelton and Mohammed Benaissa, “Fast Elliptic Curve Cryptography on FPGA”, IEEE Transactions on Very

Large Scale Integration Systems, Vol.16, No.2, February 2008.

11. Santhosh Ghosh, Monjur Alam, Indranil Sen Gupta and Dipanwita Roy Chowdhury, “ A robust GF(p) parallel arithmetic unit

for public key cryptography”, 10th Euromicro conference on digital system design architectures, methods and tools (DSD

2007).

12. Hamid Reza Ahmadi and Ali Afzali Kuhsa, “Low power flexible GF(p) elliptic curve cryptography processor”,

13. Ciaran J McIvor, Maire McLoone and John V McCanny, “ Hardware elliptic curve cryptographic processor over GF(p)”,

IEEE Transactions on circuits and systems –I: Vol. 53, No.9, September 2006.

14. Yadollah Eslami, Ali Sheikholeslami, P Glenn Gulak Shoichi Masui and Kenji Mukaida, “ An area efficient universal

cryptography processor for smart cards”, IEEE Transactions on Very Large Scale Integration Systems, Vol.14, No.1, January

2006.

15. Sabel Mercurio Hernandez Rodrfguez and Francisco Rodrfguez, “An FPGA arithmetic logic unit for computing scalar

multiplication using the half and add method”, Proceedings of the 2005 International Conference on Reconfigurable

Computing and FPGAs -2005.

16. Ray C C Cheung, Nicolas Jean-baptiste Telle, Wayne Luk and Peter Y K Cheung, “ Customizable Elliptic curve

cryptosystems”, IEEE Transactions on Very Large Scale Integration Systems, Vol.13, No.9, September 2005.

17. Alireza Hodjat , David D Hwang and Ingrid Verbauwhede, “A scalable and high performance elliptic curve processor with

resistance to timing attacks’, Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC 2005).

18. Jonathan Lutz and Anwarul Hasan, “High performance FPGA based elliptic curve cryptographic co-processor”, Proceedings

of the International Conference on Information Technology: Coding and Computing (ITCC 2004).

19. Akashi Satoh and Kohji Takano, “A scalable dual field elliptic curve cryptographic processor”, IEEE Transactions on

Computers, Vol.52, No.4, April 2003.

20. Chang Shu, Kris Gaj and Tarek El Ghazawi, “Low latency elliptic curve cryptography accelerators for NIST curves over

Binary Fields”, ICFPT 2005.

[Kumar et al., 2(6): June, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [86]

21. Philip H W Leong and Ivan K H Leung, “ A microcoded elliptic curve processor using FPGA technology”, IEEE

Transactions on Very Large Scale Integration Systems, Vol.10, No.5, October 2002.

22. Essame Al-Daoud,Ramlan Mahmod, Mohammad Rushdan and Sdem Kilicman, “A new addition formula for elliptic curves

over GF(2n)”, IEEE Transactions on Computers, Vol. 51, No.8, August 2002.

23. Adnan Abdul Aziz Gutub and Mohammad K Ibrahim, “High radix parallel architecture for GF(p) elliptic curve processor”,

ICASSP 2003.

