
[Gajbhiye et al., 2(8): August, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [30]

FPGA IMPLEMENTATION OF ENCRYPTION AND DECRYPTION RIJINDAEL’S

ALGORITHM BASED ON AES
Vishakha.M.Gajbhiye1*, V.G Puranik2
1*2Department of Electronics & Telecommunication Engineering, Bhivarabai Sawant Institute of Technology &Research, Pune,

India

Correspondence Author: gvishakha30@gmail.com

Keywords: Rijindael’s algorithm, AES, DES, FPGA, matlab , synthesis

Abstract

With the rapid development and wide application of computer and communication networks, the information security has

aroused high attention. Information security is not only applied to the political, military and diplomatic fields, but also applied to

the common fields of people’s daily lives. With the continuous development of cryptographic techniques, the long-serving DES

algorithm with 56-bit key length has been broken because of the defect of short keys. The "Rijndael encryption algorithm"

invented by Belgian cryptographers Joan Daemen and Vincent Rijmen's had been chosen as the standard AES (Advanced

Encryption Standard) algorithm whose packet length is 128 bits and the key length is 128 bits, 192 bits, or 256 bits. Since 2006,

the Rijndael algorithm of advanced encryption standard has become one of the most popular algorithms in symmetric key

encryption. AES can resist various currently known attacks. This paper presents FPGA based implementation scheme of advance

encryption standard AES-128 (with 128 bit Key) encryption and decryption algorithm. The advance encryption standard is a

symmetric block cipher that is intended to replace DES as the approved standard for a wide range of application. The 128-bit plain

text and 128-bit initial key, as well as the 128-bit output of cipher text, are all divided into four 32-bit consecutive units

respectively controlled by the clock.

Introduction
 Motivation

Hardware security solution based on highly optimized programmable FPGA provides the parallel processing capabilities and can

achieve the required encryption performance benchmarks. The current area-optimized algorithms of AES are mainly based on the

realization of S-box mode and the minimizing of the internal registers which could save the area of IP core significantly. One

new AES algorithm with 128-bit keys (AES- 128) was realized in Verilog Hardware Description Language. The 128-bit plaintext

and 128-bit key, as well as the 128-bit output data were all divided into four 32-bit consecutive units respectively. The pipelining

technology was utilized in the intermediate nine round transformations so that the new algorithm achieved a balance between

encryption speed and chip area, which met the requirements of practical application.
Aim of the project

Advanced Encryption Standard (AES), a Federal Information Processing Standard (FIPS), and categorized as Computer Security

Standard. The AES algorithm is a block cipher that can encrypt and decrypt digital information. The AES algorithm is capable

of using cryptographic keys of 128, 192, and 256 bits. The Rijndael cipher has been selected as the official Advanced Encryption

Standard (AES) and it is well suited for hardware. AES 128 bit block and 128 bit cipher key and is implemented on Spartan 3

FPGA using VHDL as the programing language .Here A new FPGA-based implementation scheme of the AES-128 (Advanced

Encryption Standard, with 128-bit key) encryption and decryption algorithm is proposed in this project. The mode of data

transmission is modified in this design so that the chip size can be reduced. The 128-bit plaintext and the 128- bit initial key, as

well as the 128-bit output of cipher text, are all divided into four 32-bit consecutive units respectively controlled by the clock.

This system aims at reduced hardware structure and high throughput .ModelSim SE PLUS 6.3 g software is used for simulation

and optimization of the synthesizable VHDL code. Synthesizing and implementation (i.e. Translate, Map and Place and Route)

of the code is carried out on Xilinx-Project Navigator, ISE 12.1i suite.
Proposed system advantages

For maintaining the speed of encryption, the pipelining technology is applied and the mode of data transmission is modified in

this design so that the chip size can be reduced

Security standard
Advanced encryption standard (AES)

The Advanced Encryption Standard (AES) was published by NIST in 2001. AES is a symmetric block cipher that operates on

128-bit block as input and output data. The algorithm can encrypt and decrypt blocks using a secret key which has a key size of

256-bit, 192-bit, or 128-bit. One of the main features of AES is simplicity that is chieved by repeatedly combining substitution

gvishakha30@gmail.com

[Gajbhiye et al., 2(8): August, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [31]

and Permutation computations at different rounds. That is, AES encrypts/decrypts a 128-bit plaintext/ciphertext by repeatedly

applying the same round transformation a number of times depending on the key size.
AES cipher

For 128-bit key size, there are 10 rounds substitutions and permutations that have to be executed in AES cipher (see Table 3.1).

The input 128-bit plaintext is presented in a 4x4 matrix of bytes. Thus, there are 32 bits each row and each column in the matrix.

This matrix is also called State array which is illustrated in table 3.1. I,

Si,j indicates a byte, where 0≤i,j ≤3. The state array is altered in each round. The input key is expanded into an array of forty

four 32-bit words, and each 4 words of the expanded key will be used in each round. The key

expansion should be done before the cipher operation. Each round transformation consists of four phases as follows:

• SubBytes

• ShiftRows

• MixColumns

• AddRoundKey

Sub bytes: The function Sub Bytes is the only non-linear function in AES. It substitutes all bytes of the state array using a LUT

which is a 16x16 matrix of bytes, often called S-box. The S-box is used for SubBytes operation that contains the results of

substitution and permutation of all possible 8-bit values. The content of the LUT can be computed by a finite-field inversion

followed by an affine transformation over GF(28). Each byte of state is mapped into a byte from the S-box; The 4 leftmost bits

are used as the row index while the 4 rightmost bits are used as the column index. Figure 3.1 illustrates the effect of the

SubBytes transformation on the State array. The S-box is designed to be resistance to known cryptanalytic

attacks [18]. SubBytes function has a property that the output cannot be described as a simple mathematical function of the input.

In this thesis, two schemes to implement S-box are discussed, one based on Block Select RAM+, and one based on Distributed

Select RAM+.

Figure 2.1 Illustration of Sub Bytes Operation

Shift rows: In the Shift Rows transformation, the bytes in the last three rows of the State are cyclically shifted over different

numbers of bytes (see Figure 3.1). The first row is not shifted. The second row is leftshifted circularly one byte. For the third row,

a 2-byte circular left shift is performed. For the fourth row, a 3- byte circular left shift is performed. Since the Mix Columns and

Add Round Key operations are done column by

column, Shift Rows ensures that 4 bytes of one column are spread out to four different columns. Figure 2.2 illustrates the effect of

the Shift Rows transformation on the State array.

Mix columns: function operates on the state column by column. Each byte of a column in state array is mapped into a new value

that is a function of all the four bytes in that column as follows:

Mix Columns operation ensures a good mixing among the bytes of each column .Shift Rows and Mix Columns together ensure

that after executing the rounds all output bits depend on all input bits. Add Round Key operation is designed as a stream cipher;

all the 128 bits of state are XORed with 4 32-bit words of expanded key resulting from key expansion. Add Round Key is the

only operation that involves using the key to ensure security

The AES with 128-bit key size forward cipher operation is shown in Figure 2.2. w[i,i+3] indicates 4 words of expanded key

resulting from key expansion, where 0≤ i ≤ 40

[Gajbhiye et al., 2(8): August, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [32]

Figure 2.2 . AES Forward Cipher Operation (Pipelining Data Path)

Decryption is a reverse of encryption which inverse round transformations to computes out the original

plaintext of an encrypted cipher text in reverse order. The round transformation of decryption uses the functions Add Round

Key, Inv Mix Columns, Inv Shift Rows, and Inv Sub Bytes successively. Add Round Key is its own inverse function because

the XOR function is its own inverse. The round keys have to be selected in reverse order. Inv Mix Columns needs a different

constant polynomial than Mix-Columns does. Inv Shift Rows rotates the bytes to the right instead of to the left. InvSubBytes

reverses the S-Box look-up table by an inverse affine transformation followed by the same inversion over GF(28) which is used

for encryption

 Key expansion

The Key expansion operation takes the 128-bit key as the input for each session and yields a 44 32-bit words expanded key array

as its output In each round, AES cipher uses 4 words of the 44-word expanded key in Add Round Key transformation,.

The first 4 words of the output array is nothing but the 16-byte input secret key. Except the words whose indexes are multiple of

four, the other words are simply made by XORing the preceding word with the word four positions back. The words whose

indexes are multiple of four go through a more complex function, called functiong before XORing with the word four positions

back

Figure 2.3. Key Expansion

[Gajbhiye et al., 2(8): August, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [33]

The function g takes the preceding word performs a one-byte circular left shift, then it performs Sub Bytes operation on each byte

of the shifted result. In the last step it takes the substituted word and XORs it with a round constant hexadecimal word array

“RC(i), 0, 0, 0”, where, 1≤ i ≤10. RC(i) is given in Table in hexadecimal for each round. The purpose of using round

constants is to liminate symmetries and similarities in making the 4-word expanded key for each round

Brief Description of Rijndael Algorithm:

Rijndael algorithm consists of encryption, decryption and key schedule algorithm. The main operations of the encryption

algorithm among the three parts of Rijndael algorithm include: bytes substitution (Sub Bytes), the row shift (Shift Rows), column

mixing (Mix Columns), and the round key adding (Add Round Key). The structure of Rijndael encryption algorithm Encryption

algorithm processes Nr+1 rounds of transformation of the plaintext for the cipher text. The value of Nr in AES algorithm whose

packet length is 128 bits should be 10, 12, or 14 respectively, corresponding to the key length of 128,192,256 bits. Only the (AES

128) encryption scheme with 128-bit keys is considered

Cipher

At the start of the Cipher, the input is copied to the State array using the conventions. After an initial Round Key addition, the

State array is transformed by implementing a round function 10, 12, or 14 times (depending on the key length), with the fina l

round differing slightly from the first Nr 1 rounds. The final State is then copied
to the output. The round function is parameterized using a key schedule that consists of a one-dimensional array of four-byte

words derived using the Key Expansion routine. The individual transformation Sub Bytes(), Shift Rows(), Mix Columns(), and

Add Round Key() – process

the State and are described in the following subsections. All Nr rounds are identical with the exception of the final round, which

does not include the Mix Columns() transformation. An example of the Cipher, showing values for the State array at the beginning

of each round and after the application of each of the four transformations described in the following sections.

SubBytes() Transformation:

The SubBytes() transformation is a non-linear byte substitution that operates independently on each byte of the State using a

substitution table (S-box). This S-box which is invertible, is constructed by composing two transformations:

1. Take the multiplicative inverse in the finite field GF(28), described; the element {00} is mapped to itself.

2. Apply the following affine transformation (over GF(2)): for 0 i 8 , where bi is the ith bit of the byte, and ci is the ith bit of a

byte c with the value {63} or {01100011}.

Here and elsewhere, a prime on a variable (e.g., b’) indicates that the variable is to be updated with the value on the right. In

matrix form, the affine transformation element of the S-box can be expressed as: The various transformations (e.g., SubBytes(),

ShiftRows(), etc.) act upon the State array that is addressed by the ‘state’ pointer. AddRoundKey() uses an additional pointer to

address the Round Key The S-box used in the SubBytes()transformation is presented in hexadecimal. For example, if s1,1

={53},then the substitution value would be determined by the intersection of the row with index ‘5’ and the column with index

‘3’. This would result in s1,1 having a value of {ed}.

Figure 2.4 SubBytes() applies the S-box to each byte of the State

Shift Rows () Transformation

In the Shift Rows() transformation, the bytes in the last three rows of the State are This has the effect of moving bytes to “lower”

positions in the row (i.e., lower values of c in a given row), while the “lowest” bytes wrap around into the “top” of the row (i.e.,

higher values of c in a givenrow). Figure 2.5 illustrates the ShiftRows() transformation

[Gajbhiye et al., 2(8): August, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [34]

Figure 2.5 ShiftRows() cyclically shifts the last three rows in the State

AddRoundKey() Transformation:

In the AddRoundKey() transformation, a Round Key is added to the State by a simple bitwise XOR

operation. Each Round Key consists of Nb words from the key schedule. Those Nb words are each added into the columns of the

State, such that where [wi] are the key schedule words described, and round is a value in the range 0 £ round £ Nr. In the Cipher,

the initial Round Key addition occurs when round = 0, prior to the first application of the round function. The application of the

AddRoundKey() transformation to the Nr rounds of the Cipher occurs when 1 £ round £ Nr. The action of this transformation is

illustrated in Fig.3. 10, where l = round* Nb. The byte address within words of the key

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine to generate a key schedule. The Key

Expansion generates a total of Nb (Nr + 1) words: the algorithm requires an initial set of Nb words, and each of the Nr rounds

requires Nb words of key data. The resulting key schedule consists of a linear array of 4-byte words, denoted [wi], with i in the

range 0 £ i < Nb(Nr + 1). The expansion of the input key into the key schedule proceeds according to the pseudo code.

Inverse Cipher

The Cipher transformations can be inverted and then implemented in reverse order to produce a straight forward Inverse Cipher

for the AES algorithm. The individual transformations used in the Inverse Cipher - InvShiftRows(), InvSubBytes(),

InvMixColumns(), and AddRoundKey() – process the State and are described in the following subsections. The Inverse Cipher is

described in the pseudo code , the array w[] contains the key schedule. The functions SubWord()and RotWord() return a result

that is a transformation of the function input, whereas the transformations in the Cipher and Inverse Cipher (e.g., ShiftRows(),

SubBytes(), etc.) transform the State array that is addressed by the ‘state’ pointer
InvShiftRows() Transformation

InvShiftRows() is the inverse of the ShiftRows() transformation. The bytes in the last three rows of the State are cyclically shifted

over different numbers of bytes (offsets). The first row, r = 0, is not shifted. The bottom three rows are cyclically shifted by Nb -

shift(r, Nb) bytes, where the shift value shift(r,Nb) depends on the row number, and is given in the below equation

Figure 2.6 InvShiftRows()cyclically shifts the last three rows in the State

In Inv MixColumn transformation process, the columns of the state are considered as polynomials over GF (28) and multiplied by

modulo x4 + 1 with a fixed polynomial given by c(x)-1,

[Gajbhiye et al., 2(8): August, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [35]

Simulation results

The initial 128-bit input tmp0 sequences are extracted to four 32-bit words as the plaintext (128bit) shown as Fig.5.1; meanwhile,

the 128-bit input sequences tmp1 are extracted to four 32-bit words as initial key (128bit); the sequences of tmp2(128bit) are the

correct cipher text data, which is used for validating the correctness of the new encryption scheme

RTL schematics

Internal schematic diagram of 32 bit AES

[Gajbhiye et al., 2(8): August, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [36]

Power getting results

Results of encryption and decryption

[Gajbhiye et al., 2(8): August, 2015] ISSN: 2349- 5197
 Impact Factor (PIF): 2.138

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

http: // www.ijrsm.com (C) International Journal of Research Science & Management

 [37]

Conclusion
Thus with the help of matlab and FPGA Rijindael’s encryption and decryption algorithm will be implemented. The performance

of the system will be calculated by using performance counter. We can also increase the performance of the system by

introducing the custom hardware. The combined design using hardware and software is known as Co-design. As the design can

also reduces number of gate required by using Xilinx

Future scope

Advanced Encryption Standard (AES) is the most secure symmetric encryption technique that has gained worldwide acceptance.

The AES is an efficient cryptographic technique that includes generation of ciphers for encryption and inverse ciphers for

ecryption. Higher security and speed of encryption/decryption is ensured by operations like Sub Bytes (S-box). Sub Bytes and

Key Scheduling. Extensive research has been conducted into development of S-box /Inv. S-Box and Mix Columns/Inv. Mix

Columns on dedicated ASIC and FPGA to speed up the AES algorithm and to reduce circuit area. This is an attempt, to survey in

detail, the work conducted in the aforesaid fields. The prime focus is on the FPGA implementations of optimized novel

References
1. Dr. Tariq Jamil, “The Rijindael Algorithm” Department of Electrical and Computer Engineering, Sultan Qaboos University

(Oman). 0278-6648/04 2004 IEEE

2. Shunwen Xiao, Yajun Chen, PengLuo, “The Optimized Design of Rijindael Algorithm Based on SOPC”, College of Physics

and Electronic information China West Normal University, Nanchong, China, 978-0-7695-3922-5/09 2009 IEEE

3. Andre Luis PescoAlcalde, MarcioSilveiraOrtmann, Samir Ahmad Mussa, “NIOS II Processor Implemented in FPGA: An

Application on Control of a PFC Converter” Federal University of Santa Catarina (UFSC), Department of Electrical

Engineering (EEL), Power Electronics Institute (INEP), 978-1-4244-1668-4/08 2008, IEEE

4. Meghana A. Hasamnis, Shri Ramdeobaba college of Engg and Management, S. S. Limaye, Jhulelal Institite og Technology,

“Custome Hardware Interface using NIOS II Processor through GPIO”, department of Electronics Engg., Nagpur, India, 978-

1-4577-2119-9/12/ 2011 IEEE

5. Madhav M. Deshpande, Meghana A. Hasamnis, “Design of Encryption System using NIOS II Processor”, Electronics

Department, R.C.O.E.M, Nagpur University, International Journal of Computer Applications, Volume 68- No. 21, April 2013

6. N. Sklavos and O. Koufopavlou, Member IEEE, “Architectures and VLSI Implementations of the AES-Proposal Rijindael”,

Electrical and Computer Engineering Department, University of Patras, Greece, 0018-9340/02 2002 IEEE

7. R. Sever, N. Ismailoglu, M. Askar, Y.C. Tekmen, “A High Speed ASIC Implementation of the Rijindael’s Algorithm,” 2004

IEEE International Symposium on Circuits and Systems, May 2004, Vancouver, Canada

