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Abstract 

With the rapid development and wide application of  computer and communication networks, the information security has 

aroused high attention. Information security is not only applied to the political,  military and diplomatic fields, but also applied to 

the common fields of people’s daily lives. With the continuous development of cryptographic techniques, the long-serving DES 

algorithm with 56-bit key length  has been broken because of the defect of short keys. The "Rijndael encryption algorithm" 

invented by Belgian cryptographers Joan Daemen and Vincent Rijmen's had been chosen as the standard AES (Advanced 

Encryption Standard) algorithm whose packet length is 128 bits and the key length is 128 bits, 192  bits, or 256 bits. Since 2006, 

the Rijndael algorithm of advanced encryption standard has become one of the most popular algorithms in symmetric key 

encryption. AES can resist various currently known attacks.   This paper presents FPGA based implementation scheme of advance 

encryption standard AES-128 (with 128 bit Key) encryption and decryption algorithm. The advance encryption standard is a 

symmetric block cipher that is intended to replace DES as the approved standard for a wide range of application. The 128-bit plain 

text and 128-bit initial key, as well as the 128-bit output of cipher text, are all divided into four 32-bit consecutive units 

respectively controlled by the clock. 

 

Introduction  
 Motivation 

Hardware security solution based on highly optimized programmable FPGA provides the parallel processing capabilities and can 

achieve the required encryption performance benchmarks. The current area-optimized algorithms of AES are mainly based on the 

realization of S-box mode and the minimizing of the internal   registers which could save the area of IP core significantly. One 

new AES algorithm with 128-bit keys (AES- 128) was realized in Verilog Hardware Description Language. The 128-bit plaintext 

and 128-bit key, as well as the 128-bit output data were all divided into four 32-bit consecutive units respectively. The pipelining   

technology was utilized in the intermediate nine round transformations so that the new algorithm achieved a  balance between 

encryption  speed and chip area, which met the requirements of practical application.   
Aim of the project 

Advanced Encryption Standard (AES), a Federal Information Processing Standard (FIPS), and categorized as   Computer Security 

Standard. The AES algorithm is a block cipher that can encrypt and decrypt digital    information. The AES algorithm is capable 

of using cryptographic keys of 128, 192, and 256 bits. The Rijndael  cipher has been selected as the official Advanced Encryption 

Standard (AES) and it is well suited for hardware.  AES 128 bit block and 128 bit cipher key and is implemented on Spartan 3 

FPGA using VHDL as the    programing language .Here A new FPGA-based implementation scheme of the AES-128 (Advanced 

Encryption   Standard, with 128-bit key) encryption and decryption algorithm is proposed in this project. The mode of data  

transmission is modified in this design so that the chip size can be reduced. The 128-bit plaintext and the 128-  bit initial key, as 

well as the 128-bit output of cipher text, are all divided into four 32-bit consecutive units  respectively controlled by the clock. 

This system aims at reduced hardware structure and high   throughput .ModelSim SE PLUS 6.3 g software is used for simulation 

and optimization of  the  synthesizable  VHDL code. Synthesizing and implementation (i.e. Translate, Map and Place and Route) 

of the code is carried  out on Xilinx-Project Navigator, ISE 12.1i suite. 
Proposed system advantages 

For maintaining the speed of encryption, the  pipelining technology is applied and the mode of data  transmission is modified in 

this design so that the chip size can be reduced 

 

Security standard 
Advanced encryption standard (AES) 

The Advanced Encryption Standard (AES) was published by NIST in 2001. AES is a symmetric block cipher  that operates on 

128-bit block as input and output data. The algorithm can encrypt and decrypt blocks using a  secret key which has a key size of 

256-bit, 192-bit, or 128-bit. One of the main features of AES is simplicity that   is  chieved by repeatedly combining substitution 
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and   Permutation computations at different rounds. That is, AES encrypts/decrypts a 128-bit plaintext/ciphertext by repeatedly 

applying the same round transformation a  number of times depending on the key size. 
AES cipher 

For 128-bit key size, there are 10 rounds substitutions and permutations that have to be executed in AES  cipher (see Table 3.1). 

The input 128-bit plaintext is presented in a 4x4 matrix of bytes. Thus, there are 32 bits  each row and each column in the matrix. 

This matrix is also called State array which is illustrated in table 3.1. I, 

Si,j indicates a byte, where 0≤i,j ≤3. The state array is altered in each round. The input key is expanded into an  array of forty 

four 32-bit words, and each 4 words of the expanded key will be used in each round. The key 

expansion should be done before the cipher operation. Each round transformation consists of four phases as  follows: 

• SubBytes 

• ShiftRows 

• MixColumns 

• AddRoundKey 

Sub bytes: The function Sub Bytes is the only non-linear function in AES. It substitutes all bytes of the state  array using a LUT 

which is a 16x16 matrix of bytes, often called S-box.  The S-box is used for SubBytes operation that contains the results of 

substitution and permutation of all   possible 8-bit values. The content of the LUT can be computed by a finite-field inversion 

followed by an affine  transformation over GF(28). Each byte of state is mapped into a byte from the S-box; The 4 leftmost bits 

are  used as the row index while the 4 rightmost bits are used as the column index. Figure 3.1 illustrates the effect of   the 

SubBytes transformation on the State array. The S-box is designed to be resistance to known cryptanalytic 

attacks [18]. SubBytes function has a property that the output cannot be described as a simple mathematical  function of the input.   

In this thesis, two schemes to implement S-box are discussed, one based on Block Select RAM+, and one  based on Distributed 

Select RAM+. 

 
Figure 2.1 Illustration of Sub Bytes Operation 

 

Shift rows:  In the Shift Rows transformation, the bytes in the last three rows of the State are cyclically  shifted over different 

numbers of bytes (see Figure 3.1). The first row is not shifted. The second row is leftshifted  circularly one byte. For the third row, 

a 2-byte circular left shift is  performed. For the fourth row, a 3- byte circular left shift is performed. Since the Mix Columns and 

Add Round Key operations are done column by  

column, Shift Rows ensures that 4 bytes of one column are spread out to four different columns. Figure 2.2  illustrates the effect of 

the Shift Rows transformation on the State array. 

Mix columns:  function operates on the state column by column. Each byte of a column in state array is   mapped into a new value 

that is a function of all the four bytes in that column as follows: 

Mix Columns operation ensures a good mixing among the bytes of each column .Shift Rows and Mix  Columns together ensure 

that after executing the rounds all output bits depend on all input bits. Add Round Key  operation is designed as a stream cipher; 

all the 128 bits of state are XORed with 4 32-bit words of expanded  key resulting from key expansion. Add Round Key is the 

only operation that involves using the key to ensure security 

The AES with 128-bit key size forward cipher operation is shown in Figure 2.2. w[i,i+3] indicates 4 words of   expanded key 

resulting from key expansion, where 0≤ i ≤ 40 
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Figure 2.2 . AES Forward Cipher Operation (Pipelining Data Path) 

 

Decryption is a reverse of encryption which inverse round transformations to computes out the original 

plaintext of an encrypted cipher text in reverse order. The round transformation of decryption uses the functions   Add Round 

Key, Inv Mix Columns, Inv Shift Rows, and Inv Sub Bytes successively. Add Round Key is its own    inverse function because 

the XOR function is its own inverse. The round keys have to be selected in reverse   order. Inv Mix Columns needs a different 

constant polynomial than Mix-Columns does. Inv Shift Rows rotates  the bytes to the right instead of to the left. InvSubBytes 

reverses the S-Box look-up table by an inverse affine   transformation followed by the same inversion over GF(28) which is used 

for encryption                

 Key expansion 

The Key expansion operation takes the 128-bit key as the input for each session and yields a 44 32-bit words  expanded key array 

as its output  In each round, AES cipher uses 4 words of the 44-word expanded key in Add Round Key transformation,. 

The first 4 words of the output array is nothing but the 16-byte input secret key. Except the words whose  indexes are multiple of 

four, the other words are simply made by XORing the preceding word with the word   four positions back. The words whose 

indexes are multiple of four go through a more complex function, called  functiong before XORing with the word four positions 

back 

 
Figure 2.3. Key Expansion 
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The function g takes the preceding word performs a one-byte circular left shift, then it performs Sub Bytes  operation on each byte 

of the shifted result. In the last step it takes the substituted word and XORs it with a round constant hexadecimal word array 

“RC(i), 0, 0, 0”, where, 1≤ i ≤10. RC(i) is given in Table in hexadecimal  for each round. The purpose of using round 

constants is to  liminate symmetries and similarities in making the  4-word expanded key for each round 
 

Brief Description of Rijndael Algorithm: 

Rijndael algorithm consists of encryption, decryption and key schedule algorithm. The main operations of  the encryption 

algorithm among the three parts of Rijndael algorithm include: bytes substitution (Sub Bytes), the  row shift (Shift Rows), column 

mixing (Mix Columns), and the round key adding (Add Round Key). The  structure of Rijndael encryption algorithm Encryption   

algorithm processes Nr+1 rounds of transformation of the plaintext for the cipher text. The value of Nr in AES algorithm whose 

packet length is 128 bits should be 10, 12,  or 14 respectively, corresponding to the key length of 128,192,256 bits. Only the (AES 

128) encryption scheme  with 128-bit keys is considered 

Cipher 

At the start of the Cipher, the input is copied to the State array using the conventions. After an initial Round  Key addition, the 

State array is transformed by implementing a round function 10, 12, or 14 times (depending on the key length), with the fina l 

round differing slightly from the first Nr 1 rounds. The final State is then copied 
to the output. The round function is parameterized using a key schedule that consists of a one-dimensional array  of four-byte 

words derived using the Key Expansion routine. The individual transformation Sub Bytes(), Shift Rows(), Mix Columns(), and 

Add Round Key() – process 

the State and are described in the following subsections.  All Nr rounds are identical with the exception of the final round, which 

does not include the Mix Columns() transformation. An example of the Cipher, showing values for the State array at the beginning 

of each round and  after the application of each of the four transformations described in the following sections.  

SubBytes() Transformation: 

The SubBytes() transformation is a non-linear byte substitution that operates independently on each byte of  the State using a 

substitution table (S-box). This S-box which is invertible, is constructed by composing two transformations:  

1. Take the multiplicative inverse in the finite field GF(28), described; the element {00} is mapped to itself. 

2. Apply the following affine transformation (over GF(2) ):  for 0 i 8 , where bi is the ith bit of the byte, and ci is the ith bit of a 

byte c with the value {63} or {01100011}. 

Here and elsewhere, a prime on a variable (e.g., b’) indicates that the variable is to be updated with the value on  the right. In 

matrix form, the affine transformation element of the S-box can be expressed as: The various transformations (e.g., SubBytes(), 

ShiftRows(), etc.) act upon the State array that is addressed by the ‘state’ pointer. AddRoundKey() uses an additional pointer to 

address the Round Key  The S-box used in the SubBytes()transformation is presented in hexadecimal. For example, if s1,1 

={53},then the substitution value would be determined by the intersection of the row with index ‘5’ and the column with index 

‘3’. This would result in s1,1 having a value of {ed}. 

 
Figure 2.4 SubBytes() applies the S-box to each byte of the State 

 

Shift Rows () Transformation 

In the Shift Rows() transformation, the bytes in the last three rows of the State are  This has the effect of moving bytes to “lower” 

positions in the row (i.e., lower values of c in a given row), while the “lowest” bytes wrap around into the “top” of the row (i.e., 

higher values of c in a givenrow). Figure 2.5 illustrates the ShiftRows() transformation 
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Figure 2.5 ShiftRows() cyclically shifts the last three rows in the State 

 

AddRoundKey() Transformation: 

In the AddRoundKey() transformation, a Round Key is added to the State by a simple bitwise XOR 

operation. Each Round Key consists of Nb words from the key schedule. Those Nb words are each added into the columns of the 

State, such that where [wi] are the key schedule words described, and round is a value in the  range 0 £ round £ Nr. In the Cipher, 

the initial Round Key addition occurs when round = 0, prior to the first application of the round function. The application of the 

AddRoundKey()  transformation to the Nr rounds of the  Cipher occurs when 1 £ round £ Nr. The action of this  transformation is 

illustrated in Fig.3. 10, where l = round* Nb. The byte address within words of the key  

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine to generate a key schedule. The Key 

Expansion generates a total of Nb (Nr + 1) words: the algorithm requires an initial set of Nb words, and each of the Nr rounds 

requires Nb words of key data. The resulting key schedule consists of a linear array of 4-byte words, denoted [wi ], with i in the 

range 0 £ i < Nb(Nr + 1). The expansion of the input key into the key schedule proceeds according to the pseudo code. 

Inverse Cipher 

The Cipher transformations can be inverted and then implemented in reverse order to produce a straight forward Inverse Cipher 

for the AES algorithm. The individual transformations used in the Inverse Cipher - InvShiftRows(), InvSubBytes(), 

InvMixColumns(), and AddRoundKey() – process the State and are described  in the following subsections. The Inverse Cipher is 

described in the pseudo code , the array w[] contains the key  schedule. The functions SubWord()and RotWord() return a result  

that is a transformation of the function input, whereas the transformations in the Cipher and Inverse Cipher (e.g., ShiftRows(), 

SubBytes(), etc.) transform the  State array that is addressed by the ‘state’ pointer 
InvShiftRows() Transformation 

InvShiftRows() is the inverse of the ShiftRows() transformation. The bytes in the last three rows of the State  are cyclically shifted 

over different numbers of bytes (offsets). The first row, r = 0, is not shifted. The bottom  three rows are cyclically shifted by Nb -

shift(r, Nb) bytes, where the shift value shift(r,Nb) depends on the row number, and is given in the below equation 

 
Figure 2.6 InvShiftRows()cyclically shifts the last three rows in the State 

 

In Inv MixColumn transformation process, the columns of the state are considered as polynomials over GF (28) and multiplied by 

modulo x4 + 1 with a fixed polynomial given by c(x)-1,  
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Simulation results 

 

 
 

The initial 128-bit input tmp0 sequences are extracted to four 32-bit words as the plaintext (128bit) shown as Fig.5.1; meanwhile, 

the 128-bit input sequences tmp1 are extracted to four 32-bit words as initial key (128bit); the sequences of tmp2(128bit) are the 

correct cipher text data, which is used for validating the correctness of the new encryption scheme 
                       

RTL schematics 

 

 
 

Internal schematic diagram of 32 bit AES 
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Power getting results 

 
Results of encryption and decryption 
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Conclusion 
Thus with the help of matlab and FPGA Rijindael’s encryption and decryption algorithm will be implemented. The performance 

of the system will be calculated by using performance counter.  We can also increase the performance of the system by 

introducing the custom hardware. The combined design using hardware and software is known as Co-design. As the design can 

also reduces number of gate required by using Xilinx 

 

Future scope 

Advanced Encryption Standard (AES) is the most secure symmetric encryption technique that has gained worldwide acceptance. 

The AES is an efficient cryptographic technique that includes generation of ciphers for  encryption and inverse ciphers for 

ecryption. Higher security and speed of  encryption/decryption is ensured by operations like Sub Bytes (S-box). Sub Bytes and 

Key Scheduling. Extensive research has been conducted into development of S-box /Inv. S-Box and Mix Columns/Inv. Mix 

Columns on dedicated ASIC and FPGA to speed up the AES algorithm and to reduce circuit area. This is an attempt, to survey in 

detail, the work  conducted in the aforesaid fields. The prime focus is on the FPGA implementations of optimized novel 
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